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Abstract
Diffusion models have demonstrated promising potential in recom-
mender systems owing to its powerful generative ability. However,
due to the inherent sparse nature of real-world recommendation
data, existing works suffer two issues: 1) Randomly sampled Gauss-
ian noise addition tends to obscure original user preferences. 2)
Relying on static recovery targets with insufficient interaction pat-
terns constrains the model’s learning effectiveness and generative
ability. To address these issues, we propose SimDiff, a simple and
novel diffusion-based recommendation framework. For the first
issue, instead of using random Gaussian noise, we leverages rich
semantic information by incorporating auxiliary signals from text
or image modalities to enhance the input data of denoising model.
In response to the second issue, we build a dynamic learning target
that iteratively updates throughout the training process, enabling
richer information capture. A dual-objective collaborative training
strategy is designed to simultaneously optimize reconstruction and
BPR losses, which coordinated by a dual-objective balance term.
Additionally, we employ multiple GCN layers only during infer-
ence to incorporate higher-order co-occurrence information while
maintaining training efficiency. Extensive experiments on five real-
world datasets demonstrate that SimDiff significantly outperforms
state-of-the-art methods. Our SimDiff offers a simple yet effective
solution for enhancing recommendation performance and suggests
a novel paradigm for applying diffusion method in recommender
system.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Collaborative Filtering, Generative Recommender Model, Diffusion
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1 Introduction
In the age of data explosion, recommender systems have become
crucial for managing the exponential growth of information. As
the volume of user interaction data continues to grow, there is an
increasing demand for recommender systems to effectively extract
potential user preferences. In recent years, generative models have
attracted considerable attention from the research community due
to their impressive ability to model complex data distributions and
generate highly realistic outputs [3, 6, 11, 16, 18, 19, 27, 32, 33, 39].
Among various generative models, diffusion models have emerged
as a particularly advantageous paradigm for their exceptional per-
formance in capturing data distributions [12, 15, 20, 21, 24, 36–
38, 42, 45].

Diffusion-based models have showcased their promising poten-
tial in recommendation and achieved some progress. One notable
work is DiffRec [29], which applies the diffusion paradigm directly

to user-item interaction graphs. This model implements a train-
ing process that involves adding and removing noise from the
graph. During inference, it treats the original interaction graph
as noisy data and performs denoising to generate predictions. In
the domain of sequence recommendation, DreamRec [40] propose
a learning-to-generate paradigm that firstly constructs guidance
representations, which are then leveraged for generating an oracle
item to depict the true preference of the user directly. Recently,
DDRM [44] presents a model-agnostic diffusion framework that
first employs a backbone model to train representations, then facili-
tates bidirectional guidance between users and items, while CF-Diff
[10] adapted diffusion with a forward process smoothing item-item
similarity. Beyond these, other works [22, 23, 31, 41, 46] have ex-
plored diffusion techniques and further enriching the landscape of
diffusion-based recommendation research.

Despite the progress made by existing diffusion-based recom-
mendation models, several limitations remain. Current methods
primarily adopt a straightforward transfer of diffusion paradigm
from image synthesis, using input data as the recovery target in
the denoising model to generate oracle interaction terms, wherein
the original interaction or item representations undergo randomly
sampled Gaussian noise corruption. However, due to the inherent
highly sparse recommendation data in real world, this paradigm
faces two critical issues when applied to recommendation scenarios:

• The destruction of interaction information by Gaussian
noise: The key of dealing with user-item interaction data is
ensuring the preservation of the valuable information inherent in
these interactions. However, when randomly sampled Gaussian
noise is directly added into the user-item interaction graph or
representations, it introduces perturbations that do not align with
the original data structure. Since Gaussian noise is uncorrelated
with the actual interactions, it distorts the true relationships
between users and items, thus aggravate the sparsity challenge
inherent in the raw data.

• Limited available information restricts the generative abil-
ity: During model training, the information density of labels
significantly impacts model performance. More informative la-
bels enable models to extract deeper insights of data during
training, leading to superior model capability. In the diffusion
reverse stage, the recovery targets used during training phase
are typically derived from pre-trained representations or existing
interaction graphs which contain highly limited user preference
pattern. Relying solely on such information sources significantly
constrains the generative ability of the model, leading to unreli-
able generation outcomes.

To address the aforementioned challenges, we investigate the
diffusion paradigm on recommendation systems and make some
novel modifications. Regarding the first issue, instead of employing
randomly sampled Gaussian noise, we incorporate auxiliary infor-
mation derived from text and image modalities, which are rich in
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(a) Pre-trained (b) Noise Addition (c) Signal Injection
Figure 1: Visualization of the item embeddings on Amazon-
Baby dataset using T-SNE

semantic and contextual information. This not only injects seman-
tic features into sparse interaction data to enrich its information,
but also leverages the subsequent denoising process to eliminate
the noise contained in these auxiliary signals, ultimately generating
representations that capture users’ authentic preferences. As for
the second issue, we carefully design an dynamic learning target
for generative process. Our intuition is to replace the stastic input
data with more informative changeable targets updated throughout
model training and encompasses increasingly richer information
with each iteration. Furthermore, this dynamic target can better
leverage the generative ability of the diffusion process, thereby
improving the overall generative quality.

In this paper, we propose a simple and effective diffusion based
model which called SimDiff. Specifically, in order to introduce se-
mantic information, instead of gradually adding Gaussian noise,
we directly combine the auxiliary information and item represen-
tations using weighted aggregation, and feed the result into the
reverse process for denoising and generation. To construct the dy-
namic learnable target, we initialize and dynamically update it by
using the learning results from the previous epoch as the training
target for the next. We also build a dual-objective collaborative
training strategy that optimizes both reconstruction loss and BPR
loss simultaneously to enhance the renewal of this target. Addition-
ally, we only utilize multiple GCN layers in the inference phase to
further incorporate higher-order co-occurrence information, which
eliminates the need for convolution operations during training,
thereby significantly improving efficiency. We conduct extensive
experiments on five real-world datasets and verify the superiority
of our SimDiff model. Our contributions can be summarized as
follows.

• We investigate the limitations of previous diffusion-based recom-
mendation models and propose a novel generative framework, in
which we significantly modify the diffusion paradigm in response
to the sparse nature of recommendation data.

• Instead of adding randomly sampled Gaussian noise to corrupt
interactions, we introduce an auxiliary signal with semantic in-
formation derived from various modal features, such as text and
images, to help generate item representations.

• We build a dynamic target which can be updated iteratively to
guide the generation process, thus allowing the model to learn
more abundant user preference patterns and substantially en-
hancing the model’s learning capability and adaptability.

• We conduct evaluations on five real-world interaction datasets.
Results show that our model significantly outperforms other
baseline methods. Apart from this, we also perform empirical
studies to improve the interpretability of our framework.
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Figure 2: The percentage of changes in generative outcomes
2 Investigation of Diffusion-Based

Recommender Systems
2.1 Comparison between Noise Addition and

Auxiliary Signal Injection
In order to investigate the corruption of co-occurrence relationships
in recommendation data caused by randomly sampled Gaussian
noise, as well as validating the effectiveness of auxiliary semantic
signal injection proposed in our SimDiff, we design three kinds of
item representations and visualize them using t-SNE for intuitive
observation of data distributions. Specifically, we first obtain item
representations through LightGCN pre-training on the Amazon-
Baby dataset, and then define three variants based on the repre-
sentations: 1) pre-trained item embeddings that only preserve co-
occurrence relationships; 2) representations corrupted by random
Gaussian noise; and 3) latent variables obtained through auxiliary
signal injection. The second and third variants represent the input
data of denoising models in traditional diffusion paradigms and our
SimDiff, respectively.

As shown in Figure 1(a), the item embeddings pre-trained by
LightGCN demonstrate a gradual trend toward homogeneous dis-
tribution. However, due to the sparsity of original interaction data,
this even spread remains limited, with numerous clustered item
representations still present. In Figure 1(b), the noise corruption
results in items becoming crowded in limited discrete regions of
the item space, making them indistinguishable, further intensifying
the model’s difficulty in capturing inherent user preferences. In
stark contrast, Figure 1(c) clearly shows that after auxiliary signal
injection in SimDiff, the embeddings exhibit a more balanced spa-
tial arrangement. This empirical observation strongly suggests that
introducing noise to inherently sparse recommendation data sig-
nificantly disrupts the original interaction patterns, indicating that
the forward process of traditional diffusion paradigm is inadequate
for handling recommendation scenarios.

2.2 Impact of Recovery Target on Diffusion
Model’s Generative Ability

As the recovery target in the diffusion’s reverse process guides the
denoising trajectory, it largely determines the generative capability
of diffusion models. In this subsection, we investigate the restriction
of model’s learning ability and generative performance imposed by
static recovery targets, which extracted from sparse original recom-
mendation data. We select diffusion-based recommender systems
CF-Diff and DiffRec for comparison with our SimDiff framework on
the Tiktok, Amazon-Baby and Taobao dataset. To ensure fairness,
we calculate the percentage of changes in generated results for each
epoch compared to the previous one, which can be formulated as
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follows:

P𝑡 =
1

|N𝑟 |

N𝑟∑︁
𝑖=1

|𝑟𝑖,𝑡−1 − 𝑟𝑖,𝑡−1 |
|𝑟𝑖,𝑡−1 |

, (1)

where 𝑟 represents an individual element from the interaction ma-
trix or item embedding,N𝑟 denotes the total count of elements, and
𝑡 indicates the current training epoch.

It is evident that the percentage of changes for DiffRec and
CF-Diff remains consistently small and gradually decreases over
time, whereas SimDiff maintains a significantly higher level of
change throughout. We can clearly observe that the curve of SimD-
iff exhibits approximately periodic fluctuations, indicating that our
framework continuously acquires new information through iter-
ative updates of the dynamic target. Moreover, the overall perfor-
mance results in section 5.2 further confirm that SimDiff achieves
significantly superior generative performance compared to the
other two models. This observation reveals that static recovery
targets constructed from sparse interaction data significantly limit
the model’s continuous learning capabilities, as they contain re-
stricted information. Conversely, our proposed dynamic targets that
can iteratively enrich their representations demonstrate superior
performance in improving generation quality.

3 Problem Definition
• Collaborative Graph with Auxiliary Signal. Consider the
input of a recommender system as a binary interaction graph G =

(U ∪ I, E), where U = {𝒖1, 𝒖2, ..., 𝒖𝑀 } represents the set of users
and I = { 𝒊1, 𝒊2, ..., 𝒊𝑁 } represents the set of items. The edge set E
contains edges between users and items, where an edge (𝒖𝑚, 𝒊𝑛) ∈
E indicates an observed interaction between user 𝒖𝑚 and item 𝒊𝑛 .
We can represent the user-item interactions through an adjacency
matrix A ∈ R𝑀×𝑁 ,𝑀 and 𝑁 denote the number of user and item.
The element A𝑚𝑛 equals 1 if there exists an interaction between
user 𝒖𝑚 and item 𝒊𝑛 , and 0 otherwise. Furthermore, to incorporate
rich semantic information to guide the generation process, we
introduce the auxiliary signals Ĝ extracted from modal features F̂.
• Task Formulation. Given this graph, our objective is to learn
a function 𝒇 that predicts the likelihood of future interactions be-
tween users and items. For each user 𝒖𝑚 , we aim to generate a per-
sonalized ranking of previously uninteracted items { 𝒊𝑛 | (𝒖𝑚, 𝒊𝑛) ∉
E} based on the predicted scores. The function 𝒇 takes the input of
an interaction graph with auxiliary signal GA = (G, {ĝ𝑖 | 𝒊 ∈ I}),
formulated as �̂�𝑢 = 𝑓 (GA ).

4 Methodology
In this section, we present our SimDiff, which consists of train-
ing and inference phase. During the training phase, we inject
dimensionally-aligned auxiliary information into item representa-
tions to enrich its semantic space, treating it as semantically rich
noise. After that, we build a dynamic target to guide the model
to denoise the latent variables and generate item representations
that capture users’ authentic interaction preferences. To iteratively
update the targets, we develop a collaborative training strategy that
optimize the BPR loss while learning the generation process. In the
inference phase, after generating item representations, we leverage
the LightGCN paradigm to introduce higher-order co-occurrence

information, further enhancing the recommendation task perfor-
mance. We detail each component in the following subsections.

4.1 Signal Alignment Process
The auxiliary signal, which carry rich semantic information, can
be derived from various modalities associated with items, such
as user-generated textual reviews, product descriptions, or visual
content in the form of item images. Specifically, we first extract the
item modal features f̂𝑖 ∈ R𝑑𝑚 by employing different approaches
based on the type of modality. For textual data, we utilize a pre-
trained Sentence-BERT model as the feature encoder, while for
image data, we directly extract the visual features from the raw
dataset. Subsequently, to ensure dimensional compatibility and
enhance the feature representation, we transform these features
through a Multi-Layer Perceptron (MLP) architecture to generate
the guide signal ĝ𝑖 ∈ R𝑑 . This transformation can be formulated as
follows:

ĝ𝑖 = MLP(f̂𝑖 ;𝜃 ), (2)

where 𝜃 represents the learnable parameters of the MLP network,
and 𝑖 denotes the 𝑖-th item. This architectural design ensures that
the guide signal maintains dimensional consistency with the target
space while effectively capturing the essential preference-related
information from the input features.

4.2 Training Phase
In order to better understand personalized user preferences for
items and capture latent co-occurrence patterns, we propose a
novel representation generation approach. Our key insight is that
generating item embeddings directly offers a more comprehensive
solution.

4.2.1 Auxiliary Semantic Signal Injection.
Considering that user-item interactions typically lack semantic
content, we introduce modal signals as auxiliary information and
consider them as another form of noise. We synthesizes two key
information sources: the co-occurrence patterns embedded within
user-item interactions and the semantic features extracted from
auxiliary signals. Our method combines initialized item embed-
dings with aligned guide signals through a designed integration
process. Specifically, we merge its embedding vector E𝑖 with the
corresponding guide signal Ĝ through a weighted fusion operation
to obtain the latent variable X𝑇 as follows:

X𝑇 = E𝑖 ∗ 𝛼 + Ĝ ∗ 𝛽, (3)

where𝛼 and 𝛽 denote the ratio of combination. This fusion approach
preserves both the co-occurrence patterns captured in the item
embeddings and the semantic features encoded in the guide signals,
while avoiding the potential information loss that would result
from noise addition.

4.2.2 Dynamic Target Denoising Process.
Although auxiliary signals in recommender systems contain rich
semantic information, not all of them directly reflects authentic
user preferences. A substantial portion consists of user preference-
irrelevant information that can be treated as noise. In response, we
leverage the diffusion reverse paradigm as an effective mechanism
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Figure 3: The overall architecture of our proposed SimDiff, which involves injecting rich semantic information derived from
text or image modalities into item representations. Dynamic targets are iteratively updated while guiding the generation
of representations that contain authentic user preferences. The dual-objective collaborative training strategy continuously
optimizes dynamic targets and other model parameters. During inference, the LightGCN paradigm is incorporated to enhance
representations with higher-order co-occurrence information, improving training efficiency by avoiding GCN during the
training phase.

to remove such noise while preserving the essential preference sig-
nals. As the existing recommender systems of using static user-item
interactions and pre-trained representations as recovery targets
which contain Insufficient user preference patterns constrains the
model’s generative ability, we introduce a dynamic learnable target
as recovery target. This method enables continuous information
enrichment throughout the model’s training iterations, allowing
for progressive accumulation of knowledge. By employing the pre-
vious epoch’s training results as the recovery target for subsequent
epochs, the target undergo adaptive updates, enabling more flex-
ible representation learning and better capture of complex user
preference.

In detail, we initialize the target representations T , and employ
an MLP structure as denoising model to process latent variables and
generate item embeddings. Additionally, we preserve Sinusoidal
Positional Encoding to help model learn the generation process of
each step. The process is as follows:

X𝑇−1 = 𝑀𝐿𝑃 (𝐶𝑜𝑛𝑡𝑎𝑐𝑡 [X𝑇 , Ĝ, E𝑡𝑇 ]), (4)

where X𝑇 ∈ R𝑁×𝑑 is the latent variable, Ĝ ∈ R𝑁×𝑑 is the guide
signal, E𝑡

𝑇
∈ R𝑁×𝑑𝑡 is the time positional encoding at time step 𝑇 ,

X𝑇−1 ∈ R𝑁×𝑑 is the denoising result of 𝑇 − 1 step.
Following the reverse process in existing diffusion paradigm, we

finally generate the item embeddings X̂𝜃 . Given the parameters 𝜃
of model, we define t𝑖 denote the dynamic target of item 𝑖 , the 𝑡-th
learning objective is:

𝐿𝑡−1 =

𝑁𝐼∑︁
𝑖=1

𝐷𝐾𝐿 (𝑞(x𝑖,𝑡−1 |x𝑖,𝑡 , t𝑖 ) | |𝑝𝜃 (x𝑖,𝑡−1 |x𝑖,𝑡 , ĝ𝑖 )) . (5)

Our objective is enabling the model to learn the progressive
denoising process of latent variables, ultimately converging to-
ward the recovery targets. Throughout this process, the dynamic

targets continuously evolve, acquiring increasingly enriched repre-
sentations. In the following subsection, we will provide a detailed
explanation of the training strategy for updating this dynamic tar-
get.

4.2.3 Dual-Objective Collaborative Training Strategy.
The incorporation of auxiliary information enriches the generation
process with semantic content. However, since the dynamic target
is trained from initialization, it lacks co-occurrence relationships.
To integrate user-item interaction patterns while training the gen-
erative model, we design a dual-objective collaborative training
strategy. Our intuition is to introduce co-occurrence relationships
into the generation of item representations. Through the diffusion
paradigm, we integrate co-occurrence relationships with semantic
information to obtain representations that encapsulate authentic
user preferences. In the practical implementation, one of the for-
mulation can be described as:

L𝑟 =
𝑁∑︁
𝑖=1

t𝑖 − 𝑓𝜃 (x𝑖,𝑡 , ĝ𝑖 , E𝑡𝑡 )
2

. (6)

The loss term of reconstruction, denoted as L𝑟 , regulating the evo-
lutionary trajectory of the latent variable X𝑇 toward the authentic
user preference.

We employ the Bayesian Personalized Ranking (BPR) loss as our
secondary loss term L𝑏𝑝𝑟 . The BPR loss effectively captures pair-
wise relationships between items, enabling the model to learn from
implicit feedback and establish meaningful user-item associations.
The BPR loss term L𝑏𝑝𝑟 is described as followed:

L𝑏𝑝𝑟 = −
𝑀∑︁
𝑢=1

∑︁
𝑖∈𝑁𝑢

∑︁
𝑗∉𝑁𝑢

ln𝜎 (�̂�𝑢𝑖 − �̂�𝑢 𝑗 ). (7)

• Dual-Objective Balance Term. In the practical implementation,
we observe an increasing divergence between reconstruction loss



SimDiff: A Simple yet Efficient Diffusion-based Collaborative Filtering Framework SIGIR ’25, July 13–18, 2025, Padua, Italy

Table 1: The comparison of analytical time complexity.
Component LightGCN SGL

Adjacency Matrix O(2|E |) O(4𝜌 |E |𝑠 + 2|E |)
Graph Convolution O(2|E |𝐿𝑑𝑠 | E |

𝐵
) O(2(1 + 2𝜌) |E |𝐿𝑑𝑠 | E |

𝐵
)

BPR Loss O(2|E |𝑑𝑠) O(2|E |𝑑𝑠)

Self-supervised Loss - O(|E|𝑑 (2 +𝑀 + 𝑁 )𝑠)
O(|E |𝑑 (2 + 2𝐵)𝑠)

Component DiffRec SimDiff
Forward Process O(𝐵𝑁𝑠) O(𝐵𝐷𝑑𝑠)
Denoising Process O(𝑘𝐵𝐻𝑁𝑠) O(𝑘𝐵𝐻𝑑𝑠)

BPR Loss - O(2|E |𝑑𝑠)
Reconstruction Loss O(𝐵𝑁𝑠) O(𝐵𝑑𝑠)

and BPR loss with the training progress, which adversely affects
the model’s generative capabilities. To further enhance our model’s
performance and stability, we introduce the dual-objective balance
term L𝑐 that specifically addresses the generation process. This
supplementary loss term is motivated by the a critical observation:
there exists a substantial difference between our latent variable 𝑥𝑇
and the dynamic target at the beginning of training phase. With-
out proper constraints and control mechanisms, this discrepancy
could potentially lead to unstable and uncontrolled generation.
Inspired by the efficiency of regularization loss, we finally adopt
the two-paradigm number to constrain the generative outcomes,
the constrain loss term L𝑐 can be formally expressed through the
following mathematical equation:

L𝑐 =
1
𝑁
∥X̂𝜃 ∥2 =

1
𝑁

(∑︁
𝑖

|x𝜃𝑖 |
2
)1/2

. (8)

• Total Optimization Objective. Additionally, we introduce a reg-
ularization loss term that serves to constrain the model parameters,
preventing overfitting and ensuring stable convergence during the
optimization process.The regularization loss term L𝑟𝑒𝑔 is:

L𝑟𝑒𝑔 = ∥Θ∥2
2 . (9)

Taking into account the previously outlined definitions, the con-
solidated optimization loss used in the training process for recom-
mendation tasks is represented by:

L𝑟𝑒𝑐 = 𝛼1L𝑟 + (1 − 𝛼1)L𝑏𝑝𝑟 + 𝛼2L𝑟𝑒𝑔 + L𝑐 , (10)

here, Θ represents the learnable parameters of the model, with
hyperparameters 𝛼1 and 𝛼2 controlling the relative strengths of the
reconstruction and regularization terms.

4.3 Inference Phase
While the training phase optimizes the model to generate final
targets in a single step by leveraging temporal position encoding,
the inference phase implements a more fine-grained, step-by-step
generation process. Our intuition behind this methodology lies in
maximizing the generative potential of the model. By allowing the
model to incrementally restructure the information arrangement
within the latent variable terms, we achieve two critical objectives:
enhanced generation stability and optimal output quality.

Following the generation of item embeddings during the in-
ference phase, we enhance the representation by incorporating

Table 2: Statistics of the datasets

Datasets Office Tiktok Baby Taobao Electronics

#Users 4,905 9,308 19,445 12,539 32,886
#Items 2,420 6,710 7,050 8,735 52,974
#Int. 53,258 68,722 159,669 83,648 337,837
Sparsity 99.55% 99.88% 99.88% 99.92% 99.69%

TextDim 768 768 1024 – 300
ImageDim 4096 4096 4096 4096 4096

higher-order co-occurrence information through the LightGCN
paradigm. This facilitates feature propagation between generated
item embeddings X̂𝜃 and user embeddings E𝑢 . The process consists
of two main steps: First, we process the original interaction graph
to obtain its normalized adjacency matrix Ā𝑢,𝑖 . Subsequently, the
final representations for users O𝑢 and items O𝑖 are then obtained
through multiple layers of graph convolution operations performed
on the normalized adjacency matrix. The formulation is as followed:

O𝑢 = Ā𝑢,∗H𝑢 , O𝑖 = Ā∗,𝑖H𝑖 , Ā𝑢,𝑖 = A𝑢,𝑖/
√︁
|N𝑢 | |N𝑖 |, (11)

where H𝑢 = E𝑢 , O𝑢 ∈ R𝑀×𝑑 ; H𝑖 = X̂𝜃 , O𝑖 ∈ R𝑁×𝑑 ; Ā𝑢,𝑖 ∈
R𝑁×𝑑 , N𝑢 and N𝑖 denote the neighborhood set of user 𝑢 and item
𝑖 in the interaction graph. To obtain the final recommendation
predictions, we compute the dot product between the user and item
final representations, which produces a recommendation score for
each user-item pair. This score quantifies the predicted likelihood of
interaction between a given user and item, enabling us to generate
personalized recommendations by ranking items.

4.4 Time Complexity Analysis
In this subsection, we analyze and compare the computational
complexity of SimDiff with representative baseline methods includ-
ing GCN-based LightGCN, contrastive learning-based SGL, and
diffusion-based DiffRec. We first define |E | as the number of edges
in the user-item bipartite graph,𝑀 and 𝑁 as the number of users
and items. Furthermore, let 𝑠 denote the number of epochs, 𝐵 de-
note the size of each training batch, 𝑑 denote the embedding size, 𝐷
denote the embedding size of pre-trained modal feature, 𝐿 denote
the number of GCN layers, 𝑘 and 𝐻 denote the layer and hidden
size of denoising model, 𝜌 = 1 − 𝜌 denote the keep probability of
SGL. Based on these definitions, we derive the following facts:
• Training Phase:We first reduce the dimensionality of the pre-
processed modality information using a linear layer, which has a
complexity of O(𝐵𝐷𝑑). Subsequently, the auxiliary signals are
added to the item representations to obtain the latent variables.
These variables are then processed through an MLP to execute
the generation process, with a complexity of O(𝑘𝐵𝐻𝑑𝑠). Given
that our dual-objective collaborative training strategy simultane-
ously optimizes both the BPR loss and the reconstruction loss,
their respective complexities are O(2|E |𝑑𝑠) and O(𝑁𝑑𝑠).

• Inference Phase: Compared to the training phase, the infer-
ence phase involves executing a multi-step denoising process,
which results in an additional factor of 𝑇 being multiplied to
the MLP’s complexity. Therefore, the overall complexity for the
denoising process becomes O(𝑇𝑁𝐻𝑑). Moreover, since the nor-
malized adjacency matrix has already been generated during the
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Table 3: Overall performance comparison between the baselines and SimDiffwith Recall@20, Recall@50, NDCG@20, NDCG@50.
Bold values indicate the optimal results, while underlined values represent the second-best results. Values marked with *
denote statistically significant improvements over the best baseline under single-sample t-test (p-value < 0.05). The %Improv.
illustrates the performance improvement of SimDiff compared to the best baseline model, represented by shaded cells.

Method

TikTok Baby Office Taobao Electronics
Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG
@20 @20 @20 @20 @20 @20 @20 @20 @20 @20
@50 @50 @50 @50 @50 @50 @50 @50 @50 @50

MF 0.0557 0.0235 0.0451 0.0185 0.0598 0.0232 0.0556 0.0207 0.0401 0.0155
0.1046 0.0332 0.0899 0.0272 0.1178 0.0346 0.0983 0.0290 0.0620 0.0198

ENMF 0.1031 0.0395 0.0602 0.0287 0.1004 0.0500 0.1307 0.0630 0.0299 0.0139
0.1656 0.0527 0.1055 0.0377 0.1729 0.0651 0.1813 0.0731 0.0512 0.0183

NGCF 0.0628 0.0245 0.0532 0.0226 0.0928 0.0400 0.1223 0.0523 0.0368 0.0163
0.1166 0.0350 0.1002 0.0320 0.1684 0.0563 0.1902 0.0658 0.0593 0.0209

LightGCN 0.0907 0.0379 0.0715 0.0298 0.1215 0.0558 0.1502 0.0681 0.0394 0.0178
0.1471 0.0491 0.1255 0.0409 0.2064 0.0702 0.2250 0.0830 0.0645 0.0229

SGL 0.0798 0.0342 0.0656 0.0297 0.1151 0.0549 0.1555 0.0748 0.0359 0.0175
0.1308 0.0442 0.1090 0.0384 0.1838 0.0697 0.2107 0.0859 0.0561 0.0217

NCL 0.0898 0.0402 0.0742 0.0321 0.0966 0.0463 0.1558 0.0717 0.0435 0.0199
0.1447 0.0510 0.1305 0.0433 0.1595 0.0594 0.2372 0.0880 0.0679 0.0249

LightGCL 0.0911 0.0435 0.0618 0.0231 0.1180 0.0531 0.1463 0.0649 0.0379 0.0163
0.1190 0.0455 0.1158 0.0293 0.1942 0.0696 0.1986 0.0752 0.0528 0.0208

SCCF 0.0506 0.0216 0.0728 0.0349 0.1221 0.0520 0.1062 0.0540 0.0215 0.0103
0.0883 0.0291 0.1136 0.0431 0.1963 0.0644 0.1388 0.0605 0.0332 0.0127

DiffRec 0.1036 0.0446 0.0713 0.0327 0.1159 0.0511 0.1492 0.0715 0.0236 0.0123
0.1459 0.0536 0.1181 0.0422 0.1867 0.0704 0.2013 0.0824 0.0451 0.0189

DDRM-LightGCN 0.0145 0.0057 0.0118 0.0051 0.0133 0.0058 0.0139 0.0057 0.0033 0.0020
0.0218 0.0072 0.0178 0.0063 0.0277 0.0088 0.0228 0.0075 0.0044 0.0022

DDRM-SGL 0.0281 0.0105 0.0151 0.0064 0.0381 0.0156 0.0821 0.0380 0.0060 0.0024
0.0466 0.0147 0.0259 0.0086 0.0761 0.0237 0.1086 0.0433 0.0078 0.0028

CF-Diff 0.0665 0.0312 0.0751 0.0348 0.1028 0.0500 0.0529 0.0234 0.0099 0.0048
0.1112 0.0402 0.1245 0.0449 0.1755 0.0658 0.0731 0.0274 0.0192 0.0067

GiffCF 0.1185 0.0462 0.0725 0.0323 0.1252 0.0537 0.1524 0.0659 0.0343 0.0138
0.1687 0.0572 0.1253 0.0449 0.2084 0.0719 0.2084 0.0786 0.0509 0.0181

SimDiff 0.1348∗ 0.0588∗ 0.0885∗ 0.0389∗ 0.1361∗ 0.0606∗ 0.1893∗ 0.0783∗ 0.0498∗ 0.0217∗

0.1885∗ 0.0694∗ 0.1485∗ 0.0507∗ 0.2398∗ 0.0808∗ 0.2803∗ 0.0965∗ 0.0763∗ 0.0278∗

Improv. 13.77% 27.33% 17.84% 11.46% 8.75% 8.60% 21.50% 4.68% 14.48% 9.05%
11.73% 21.37% 13.79% 12.98% 15.04% 12.38% 18.17% 9.66% 12.37% 11.65%

data preprocessing stage, this computation is excluded from the
actual model training or testing time.

We summarize the time complexity in training of SimDiff and
other methods in Table 1. We can clearly observe that SimDiff
exhibits marginally higher computational complexity than Light-
GCN, while being substantially more efficient than both SGL and
DiffRec. SGL constructs normalized matrices and performs graph
convolution operations in each training iteration and computing
self-supervised losses, which significantly increases its computa-
tional complexity. DiffRec, on the other hand, necessitates noise
injection and denoising operations across all items in each batch
during training. By eliminating the noise injection process and due
to the fact that the encoding dimension 𝑑 << 𝑁 , SimDiff achieves
notably lower computational complexity compared to DiffRec.

5 Experiments
5.1 Experimental Settings
5.1.1 Datasets.
We conduct experimental evaluations on five widely-used public

recommendation datasets: TikTok, Amazon-Baby, Amazon-Office,
Amazon-Electronics, and Taobao. The details of each dataset are
shown in Table 2.

5.1.2 Evaluation Metrics.
The effectiveness of our recommender system was measured using
Two standard ranking metrics: NDCG@K and Recall@K , where
K represents the cutoff threshold for recommended items. We em-
ployed the all-rank item evaluation strategy to access accuracy.
Final performance metrics were computed by averaging individual
scores across all test users.

5.1.3 Baseline Models.
In our experiments, we conduct comprehensive performance com-
parisons between our proposed framework SimDiff and various
existing methods. The baseline models include: (1) classical collab-
orative filtering methods such as Matrix Factorization (MF) [14]
and the efficient neural matrix factorization model ENMF [2]; (2)
popular GNN-based models including NGCF [8] and LightGCN
[7]; (3) recently proposed contrastive learning-based models that
achieve high accuracy, specifically SGL [34], NCL [17], SCCF [35],
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Table 4: Ablation Analysis Results
Dataset Metric (G, I+G) (G, I) (I, I+G) Pretrain SimDiff

TikTok

Recall@20 0.1219 0.1204 0.1206 0.0899 0.1348
Recall@50 0.1909 0.1903 0.1909 0.1449 0.1885
NDCG@20 0.0520 0.0513 0.0511 0.0361 0.0588
NDCG@50 0.0660 0.0655 0.0653 0.0469 0.0694

Baby

Recall@20 0.0698 0.0700 0.0699 0.0482 0.0885
Recall@50 0.1221 0.1229 0.1246 0.0915 0.1485
NDCG@20 0.0278 0.0288 0.0282 0.0204 0.0389
NDCG@50 0.0384 0.0395 0.0393 0.0291 0.0507

Office

Recall@20 0.1314 0.1318 0.1349 0.1275 0.1361
Recall@50 0.2240 0.2146 0.2301 0.2166 0.2398
NDCG@20 0.0549 0.0518 0.0553 0.0587 0.0606
NDCG@50 0.0741 0.0691 0.0750 0.0771 0.0808

Taobao

Recall@20 0.1456 0.1453 0.1669 0.1775 0.1893
Recall@50 0.2341 0.2415 0.2519 0.2581 0.2803
NDCG@20 0.0556 0.0569 0.0681 0.0789 0.0783
NDCG@50 0.0732 0.0760 0.0850 0.0949 0.0965

Electronics

Recall@20 0.0412 0.0426 0.0410 0.0424 0.0498
Recall@50 0.0682 0.0691 0.0688 0.0690 0.0763
NDCG@20 0.0183 0.0191 0.0184 0.0185 0.0217
NDCG@50 0.0239 0.0245 0.0241 0.0240 0.0278

and LightGCL [1]; and (4) state-of-the-art diffusion-based genera-
tive models from the past two years, namely DiffRec [29], DDRM
[40], GiffCF [46], and CF-Diff [10].

5.1.4 Implementation Details.
All models maintain a uniform embedding dimension of 64, and the
Xavier initializationmethod is applied to the embedding parameters.
The hyperparameter search space is configured as follows: The
learning rate is sampled logarithmically between 1e-6 and 5e-1. For
batch size optimization, we select different discrete values based on
the interaction volume of each dataset to ensure training efficiency
(for instance, choosing a batch size of 1024 for the TikTok dataset
and 2000 for the Amazon-Office dataset). The dropout rate, crucial
for preventing overfitting, is uniformly sampled between 0.0 and 0.5.
The reconstructon alpha parameter 𝛼1, which controls the strength
of the pairwise ranking loss, is searched within the range of 0.5
to 1.0, while the regularization alpha parameter 𝛼2 is explored
between 0.001 and 0.01 to find the optimal regularization strength.
The number of GCN layers during the inference stage is tested with
varying configurations, ranging from 1 to 3 layers. For temporal
aspects, we investigate various timestep configurations from 100 to
500. Finally, we compare the performance of two optimizers: Adam
and AdamW, both widely recognized for their effectiveness in deep
learning applications.

5.2 Performance Comparison
Table 3 presents a comparative analysis of our proposed model
against various baseline models across five datasets, from which
we can have following observations:

• Traditional matrix factorization models decompose user-item
interaction matrices to learn latent features but perform poorly
by only considering direct interactions, missing higher-order
relationships. GCN-based recommender systems like NGCF and
LightGCN improve by modeling user-item interactions as bi-
partite graphs, capturing higher-order connectivity for better
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Figure 4: Performance comparison over Amazon-Baby and
Amazon-Office between SimDiff and other outstanding base-
line models in cold-start recommendation scenario

representations. However, GCN models may suffer from over-
smoothing, making node representations too similar. Contrastive
learning alleviates this by creating positive and negative sample
pairs, maximizing representation consistency for the same node
across different views while preserving node discrimination.

• Diffusion-based recommendation models like DiffRec and Gif-
fCF outperform other baseline methods by modeling complex
relationships between user behavior and item features through
noise addition and reverse process learning. Their generative
nature fosters diversity in recommendations, enabling content
discovery. However, the noise from random sampling can disrupt
sparse interaction patterns, and static response objectives limit
their generative power.

• Our SimDiff outperforms other state-of-the-art models in met-
rics across all datasets, achieving the best overall performance.
This highlights the effectiveness of incorporating auxiliary infor-
mation to build latent variables, which avoids disruption from
Gaussian noise while enriching representations with semantic
information. Additionally, the dynamic learnable targets, trained
through a dual-objective collaborative strategy with self-iterative
updates, overcome the limitation of static targets, significantly
improving generation performance.

5.3 Ablation Analysis
Table 4 presents the ablation study results. In this analysis, (G,
I+G) denotes the variant where auxiliary signal G serves as input
data, while the fusion of auxiliary signal and item representation
is utilized as the training target for the generative process. The
variants (G, I) and (G, I+G) follow similar patterns. Pretrain repre-
sents a variant where the generative process target is replaced with
pre-trained representations and only train the denoising model.

The results demonstrate that SimDiff achieves superior perfor-
mance across almost all metrics, validating the efficacy of our pro-
posed paradigm. The variants (G, I+G), (G, I), and (I, I+G) achieve
competitive secondary results across metrics, indicating their po-
tential viability. These results substantiate the effectiveness of in-
corporating auxiliary signals as enriched semantic information.
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Figure 5: Performance versus Efficiency Analysis on Amazon-
Office, Amazon-Baby, Amazon-Electronics and Taobao
datasets. Performance strength and training efficiency in-
crease towards the upper left direction.

Notably, when the generative target is set to invariable pre-
trained representations, we observe a significant performance degra-
dation. This finding highlights the substantial utility of learnable
training targets in our framework. The empirical evidence strongly
supports the advantages of our approach in leveraging dynamic,
learnable targets over static, pretrained representations.

5.4 Indepth Model Analysis
5.4.1 Cold-start Recommendation.
As mentioned in introduction, data sparsity in recommendation is a
critical promblem. To prove out proposed SimDiff has the advantage
to solve this issue, we conduct cold-start experiments on Amazon-
Baby and Amazon-Office dataset, wherein most users has scarce
interactions with items. Figure 4 shows the results of cold-start
recommendation.

As illustrated in the figure, the x-axis represents different inter-
action thresholds (5, 10, 15, 20, 25), while the y-axis shows the cor-
responding performance metrics. The visualization demonstrates
comparative performance across all methods, with bars represent-
ing LightGCN, SGL, NCL, GiffCF, and our proposed framework.
SimDiff demonstrates superior performance on sparser interac-
tion data, particularly at lower threshold values of 5, 10, and 15
interactions. Specifically, in the baby dataset, it achieves significant
improvements in Recall@20 compared to baseline methods, with
performance gains of approximately 15%-20% when the interaction
threshold is set at these lower values. Similarly, in the office dataset,
we observe even more substantial improvements, with Recall@20
increasing by roughly 20%-40% under the same sparse interaction
conditions. These consistent performance improvements across
different domains and sparsity levels provide compelling evidence
of our model’s strong advantage in handling scenarios with limited
user-item interactions.

5.4.2 Training Efficiency.
In this subsection, we aim to study the trade-off between perfor-
mance and training efficiency. We conduct a performance versus
efficiency analysis comparing different models on the Amazon-
Electronics dataset which has the most interactions, measuring

Table 5: Auxiliary Signal Analysis
Signal Metric TikTok Baby Office Electronics

G = Image

Recall@20 0.1310 0.0833 0.1327 0.0469
Recall@50 0.1933 0.1371 0.2246 0.0768
NDCG@20 0.0588 0.0364 0.0540 0.0209
NDCG@50 0.0713 0.0474 0.0731 0.0271

G = Text

Recall@20 0.1348 0.0885 0.1361 0.0498
Recall@50 0.1885 0.1485 0.2398 0.0763
NDCG@20 0.0588 0.0389 0.0606 0.0217
NDCG@50 0.0694 0.0507 0.0808 0.0278

both the training time per epoch and the Recall@20 metric. To
ensure reliability and consistency, all models were evaluated using
the same GPU with single-process execution. As illustrated in Fig-
ure 5, our SimDiff achieves an optimal balance between training
efficiency and model performance, demonstrating superior results
while maintaining relatively low training times. Early approaches,
such as ENMF, while computationally efficient with shorter train-
ing times due to their lower complexity, shows poor performance.
LightGCN, through its simplified graph convolution operations,
maintained high training efficiency and strong performance across
most baselines. The contrastive learning paradigm, as demonstrated
by NCL, further reinforced its effectiveness in recommendation
tasks, achieving second best performance with acceptable training
durations.

5.4.3 Auxiliary Signal Analysis.
In our results of section 5.2, the performance of the proposed SimD-
iff is derived from utilizing textual features as auxiliary signals
across all datasets except Taobao, which exclusively contains ad-
ditional image features. To further investigate whether different
modalities serving as auxiliary signals influence the model’s gen-
erative performance, we conducted experiments on the other four
datasets that possess both textual and image features. To ensure
experimental reliability, we maintained identical hyperparameter
settings as those used in the text-based auxiliary signal experiments.
The results are showed in Table 5.

As demonstrated by the empirical results, the performance met-
rics exhibit comparable values across both modalities when utilized
as auxiliary signals, with certain metrics under G=Image even
surpassing those obtained with the text modality. This observation
provides strong evidence that our proposed SimDiff framework ef-
fectively leverages rich semantic information across modalities for
representation learning and recommendation, with its performance
primarily dependent on the semantic richness of auxiliary signals
rather than their specific modality type.

5.5 Analysis of Dual-Objective Balance Term
In this subsection, we demonstrate the core idea of adding the dual-
objective balance term. We first present a comparison of the results
before and after incorporating this term in Table 6. It is evident that
the addition of this term has a substantial impact on the model’s
performance, significantly enhancing its overall effectiveness.

Same as the existing diffusion models, the reconstruction loss
in SimDiff exhibits rapid convergence during the training phase.
As discussed in section 4.2.3, we implement a dual-objective col-
laborative training strategy to simultaneously optimize both the
generation process and recommendation task objectives. The curves
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Figure 6: Comparison of w/o CBT and SimDiff

Table 6: Effectiveness of Dual-Objective Balance Term

Dataset @K w/o CBT SimDiff

Recall NDCG Recall NDCG

TikTok @20 0.0899 0.0361 0.1348 0.0588
@50 0.1449 0.0469 0.1885 0.0694

Baby @20 0.0482 0.0204 0.0885 0.0389
@50 0.0915 0.0291 0.1485 0.0507

Office @20 0.1275 0.0587 0.1361 0.0606
@50 0.2166 0.0771 0.2398 0.0808

Taobao @20 0.0592 0.0214 0.1893 0.0783
@50 0.1008 0.0297 0.2803 0.0965

Electronics @20 0.0022 0.0008 0.0498 0.0217
@50 0.0041 0.0012 0.0763 0.0278

in Figure 6 show that our observations reveal a disparity between
the reconstruction loss and BPR loss as training progresses. This
divergence becomes so pronounced that the reconstruction loss
becomes negligible in comparison to the total loss, halting the
continued training of the denoising generative model. The visual-
ization demonstrates the remarkable effectiveness of incorporating
the dual-objective balance term. Before its implementation, the two
loss components differed greatly in magnitude. With this term inte-
grated, the losses balanced to similar values, allowing stable training
of the denoising model. This balanced optimization approach signif-
icantly enhances both the generative capabilities and overall model
performance, as evidenced by our experimental results.

6 Related Work
6.1 Collaborative Filtering
Research in recommender systems evolved from content-based and
collaborative filtering approaches in the 1990s to matrix factoriza-
tion (MF) techniques [13, 14, 25] during the Netflix Prize era. While
MF methods captured preference patterns via latent factors, their
limitations with data sparsity and non-linear relationships led to
Neural Collaborative Filtering (NCF) [8] and subsequent Graph Neu-
ral Network approaches, notably NGCF [30] for message passing

and LightGCN [7], which simplified graph convolution operations
for better efficiency. The field then witnessed significant advance-
ment through contrastive learning methods, inspired by SimCLR
[4], with Self-supervised Graph Learning (SGL) [34] introducing
graph augmentation techniques and Neighbor Contrastive Learning
(NCL) [17] refining negative sampling. Latest developments include
SCCF [35] unifying graph convolution with contrastive learning,
RGCL [28] employing adversarial perturbations, and RecDCL [43]
implementing a dual framework for batch-wise and feature-wise
contrastive objectives. This evolution underscores the growing em-
phasis on learning robust and discriminative representations while
maintaining computational efficiency in recommender systems.

6.2 Diffusion Based Recommendation
Diffusionmodels have gained success since DDPM [9], which learns
a denoising process through adding and removing Gaussian noise.
Extensions to improve sampling efficiency include non-Markovian
processes [26] and conditional generation [5]. In recommender
systems, DiffRec [29] applied diffusion to user-item interaction
graphs, while DreamRec [40] incorporated user history. DDRM [44]
introduced mutual conditioning between users and items during
the diffusion process, and GiffCF [46] simulated the heat equation
on graphs. These works highlight the potential of diffusion models
in modeling complex user-item interactions.

7 Conclusion
In this work, we propose a novel diffusion framework called SimD-
iff for recommender system. We replace the randomly sampled
Gaussian noise addition by injecting auxiliary signal derived from
modal feature to representations, which introduce rich semantic
information to sparse data. In order to improve the generative
effect, we build a dynamic target and update iteratively by collab-
oratively training the denoising model and optimizing BPR loss.
Our empirical evaluations across five real-world datasets show that
SimDiff significantly outperforms previous diffusion methods. This
work presents a novel perspective on diffusion-based recommender
systems and suggests new research directions for applying the
diffusion paradigm to inherently sparse recommendation tasks.
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