
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 1
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for Social Recommendation
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Abstract—Social recommendation (SocialRS), which utilizes
user social information to improve recommendation performance,
has received increasing attention. Graph neural networks (GNNs)
facilitate the integration of both user preference and social
features in SocialRS. However, existing techniques face two
challenges: 1) the inherent sparse supervision signals and noise
issues in real-world social networks; 2) current social recom-
mendation methods suffer from the neglect of user preference
and social attribute heterogeneity, which hinders the extraction
of preference-related information from social networks. Taking
inspiration from social enhancement and contrastive learning
methods, we propose a social recommendation model DSVC
based on dual social view contrastive learning. Specifically, in
response to the first challenge, our model derives the consistency
factors of users in different augmented social views, which are
used to highlight noise-resistant users and jettison preference-
independent social relationships in social views. To address
the second challenge, we adopt probability vectors generated
from consistency factors. These vectors guide the cross-view
augmentation process of the interaction graph, which helps
supplement social self-supervised signals and effectively avoid
noise retained due to indiscriminate augmentation. The baseline
model comparison experiment, ablation experiment, parameter
adjustment experiment and robustness experiment conducted
on three different real-world datasets consistently validated
the effectiveness of our model in improving recommendation
performance.

Index Terms—Contrastive learning, graph neural network,
social networks.

I. INTRODUCTION

N
OWADAYS, with the proliferation of online social

platforms [1] and the increasing demand for exploring

personalized user preferences, research on social recommender
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systems (SocialRS) has garnered significant attention.

Formerly, numerous studies on social relationships have

shown that people are more inclined to establish interpersonal

relationships with those with similar preferences, a

phenomenon known as social homophily [2]. Meanwhile,

individuals who have formed social ties demonstrate a

tendency to influence and assimilate with each other, leading

to the development of more similar preferences, referred to as

social influence [3]. Building upon the aforementioned two

theories, SocialRS has been developed to leverage user-side

implicit information effectively, alleviating the issues of data

sparsity and the long-tail phenomenon in historical interaction

data.

Early investigations [4], [5], [6], [7] have integrated social

information as a social matrix into matrix factorization (MF)

[8] to enhance collaborative filtering (CF) recommendations.

Subsequently, recent efforts [9], [10], [11], [12], [13], [14] have

applied graph neural networks (GNNs) to leverage the excellent

learning ability for graph-structured data, achieving significant

performance improvements. Correspondingly, characterized as

graph structures capturing user trust relationships, social net-

works (SNs) have found expanding applications in graph-based

recommendation frameworks. Despite the ability of GNNs to

encode graph structures from user-item interaction graphs and

SNs, there are unique challenges when dealing with SNs com-

pared to traditional recommendations. The complex and trust-

driven user relationships in SNs often cannot directly reflect

user preference characteristics for the items. Furthermore, it

is imperative to contemplate the integration of user represen-

tations that are heterogeneously encoded from social and in-

teraction data. Therefore, these discrepancies demand methods

that can overcome the constraints of traditional GNN-based

approaches. Concerning this topic, the follow-up researches

[15], [16], [17], [18], [19], [20] have made efforts to enhance

the integration, scalability, and interpretability of GNN-based

SocialRS.

The forefront SN-based research routes can be divided into

three categories. Firstly, some studies (e.g., DESIGN [21] and

DGNN [22]) ameliorate the encoding scheme of social informa-

tion, enabling enhanced SN-based encoders to better integrate

with the main recommendation task. Secondly, to compensate

for the sparsity of social networks, some works (e.g., MHCN

[23] and SEPT [24]) add auxiliary self-supervised tasks based

on social networks to compensate for the deficiency of user-

side supervision signals on user-item interaction graph. Thirdly,

2329-924X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 28,2024 at 02:33:41 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0005-0389-6222
https://orcid.org/0000-0002-9270-1810
https://orcid.org/0009-0006-1448-9945
https://orcid.org/0000-0002-8796-5969
https://orcid.org/0000-0003-2307-2261
mailto:ysx144_51@bit.edu.cn
mailto:zanderqin@bit.edu.cn
mailto:huangtianyu@bit.edu.cn
mailto:enjundu.cs@gmail.com
mailto:pzzhou@cqu.edu.cn


2 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

Fig. 1. Preference-related scenarios based on: (a) stable; (b) preference-
related social relationships.

when it comes to the issue of mass noise in social networks,

partial works apply the structure-based [25] or feature-based

[26] denoising method to affect the encoding process on SNs

so that the SocialRS can adaptively pay less attention to invalid

social information.

Despite their contribution to excavating social information,

the aforementioned approaches still face two prominent chal-

lenges, including the heterogeneity of user preferences/social

features and the inefficiency of extracting auxiliary signals from

sparse social networks.

The first challenge inherently arises from the existence of

irrelevant relations in social networks. Directly incorporating

these relations into the user-item interaction graph will in-

ject biased information into the recommendation task. Fig. 1

illustrates two recommendation scenarios based on stable and

preference-related social relationships. In our study, we selected

three users from the social network, forming a triangular rela-

tionship structure [Fig. 1(a)]. Notably, User 1 prefers detective-

themed items, User 2 leans towards digital-related items, and

User 3 has a preference for items related to manual crafts-

manship. Surprisingly, despite their diverse interests, the Po-

laroid camera, with its advantages in facilitating documentation,

portability, and ease of disassembly, aligns with their shared

preferences. In the second scenario [Fig. 1(b)], User 1 maintains

distinct social connections with User 2 and User 3. However,

their association is solely based on familial ties, leading to

significant divergence in their item preferences. Conversely,

User 1 and User 3 share a mutual interest in headsets, driven

respectively by gaming and audio-visual pursuits. Based on the

presented examples, we argue that encoding the social network

structure superficially results in redundant social interactions,

which hinder the accurate detection of interaction signals and

consequently lead to a decline in recommendation performance.

Furthermore, intimately social-associated users still exhibit re-

strictive overlap in preferred items due to significant individual

differences.

Another challenge arises from the weak preference correla-

tion faced by social networks, as well as sparsity similar to user-

item interaction graphs. As shown in Fig. 2, the user and friend

degree distribution in three real-world social network datasets

follows a power-law pattern, with a small fraction of users with

a lot of ”friends” and the majority of users in the long tail being

Fig. 2. The power-law distribution of users in real-world SNs.

not in vogue. This phenomenon results in limited effectiveness

in incorporating social auxiliary information into recommen-

dation tasks. Meanwhile, some studies [27], [28] have also

pointed out that the sparsity of auxiliary social information has

a negative impact on recommendation performance. Although

SEPT [24] and similar approaches have attempted to address

social information sparsity through auxiliary self-supervised

learning (SSL) tasks on social networks, we argue that explicitly

encoding social-supervised signals to enrich preference infor-

mation is deemed highly limited in its efficacy. Specifically,

these methods separate the tasks of social networks and user-

item graph learning and only integrate them in the final stage

of each training session, i.e., dual-tower-like structure, which

lacks the direct impact of social networks on the generation

of supervisory signals for recommendation tasks. Furthermore,

the absence of early-stage augmented social-related guidance

further hinders the complete utilization of advantageous social

information.

For the first challenge, some studies have considered filtering

irrelevant social relationships, such as MHCN [23] using hyper-

graphs and gating mechanisms to extract social paradigms that

are conducive to recommendation, GDMSR [25] using prefer-

ence similarity measurement to choose between dropout and

retaining social relationships. Even with contributions, these

methods are based solely on manual definition and similarity

analysis to quantify user connections, ignoring the capture of

fine-grained preference-social related stable information of so-

cial users, which reflects the consistency of user relationships in

both interaction and social contexts; For the second challenge,

other studies [24], [26] have taken into account the sparsity of

SNs and used SSL methods to optimize users’ social represen-

tations. Although these approaches are involved in addressing

the sparsity of SNs, they also face the impact of irrelevant social

information, as the direct integration of social encoding and

interaction encoding tasks cannot distinguish preference-related

connections in SNs. Accordingly, we can adopt user interaction

history to assist in the augmentation process of social data,

thereby facilitating the extraction of reliable social supervision

signals, and thereby reducing the impact of sparsity and irrele-

vant social connections.

To address the above-mentioned challenges, we propose

a social recommender system based on dual social view

enhanced contrastive learning for social recommendation

(DSVC). Speaking separately, in response to the challenge of

user feature disparity, we adopt a ternary closure augmentation

strategy to filter and purify social information. Furthermore, to
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optimize the acquisition of robust users whose social-related

information exhibits strong resistance to interference, we lever-

age contrastive learning (CL) among augmented social views

to generate self-supervised signals. Then, we compute the con-

sistency factor of the graph structure for individual users by

utilizing diverse augmented user embeddings, which serve as

a compressed representation of self-supervised information

extracted from the aforementioned robust users on social

networks. On the other hand, to address the challenge of

insignificant auxiliary extraction, we propose a probability-

guided strategy that selectively engages in the contrastive

learning process of the user-item interaction graph, guided by

consistency factors. This strategy serves as a bridge between

the main task and auxiliary tasks, generating more distinct

social-augmented signals from the early stages of the main

task, thereby facilitating their integration. Ultimately, we use

a series of Top-K ranking evaluation metrics to measure the

recommendation performance of the model.

In summary, our contributions can be summarized as follows:

1) We propose a framework that leverages self-supervised

signals generated through social networks to replace the

conventional dual-tower-like structure. This framework

not only efficiently harnesses social information but also

significantly mitigates the impact of injecting social noise

into collaborative filtering recommendations.

2) We propose a methodology to generate two augmented

views of the original social network to alleviate noise

and explore user features. Moreover, we introduce the

consistency factor to measure users’ resistance to noise

interference.

3) We map the consistency factor to a probabilistic form

for each user that guides the process of interaction graph

augmentation. Thus, we utilize the generation process

of auxiliary self-supervised signals to influence the main

recommendation task.

4) We implement extensive experiments conducted on mul-

tiple real-world datasets to demonstrate the universality

advantage of the proposed model. Comparative experi-

ments with several other baseline models can demonstrate

the unique advantages of the model. We also conduct

robustness experiments to demonstrate the performance

of each module in our model.

II. RELATED WORK

A. Social Recommendation

The ascendancy of online social networks amplifies the im-

portance of optimizing the utilization of user-side social rela-

tionship information. The presence of social homophily and so-

cial influence within social relationships significantly enhances

the effectiveness of recommendations.

Notably, GNN has shown significant ability in capturing re-

cursive social relationships between users, making it a popular

method for modeling social relationships in recommender sys-

tems. Establishing a social relationship model requires address-

ing two key challenges: effectively describing the influence of

different user neighbors, and seamlessly integrating interactive

and social information.

In response to the first challenge, DiffNet [16] utilized an

average pooling operation to ensure that each friend has the

same influence on the target user. However, the influence of

friends’ preferences on users in the real world is inevitably

imbalanced. Therefore, GraphRec [15] and DANSER [17] com-

bined with graph attention networks achieved better perfor-

mance improvement compared to DiffNet, further validating

the hypothesis that different friends have different influences. In

addition, due to the inherent noise of social information, ESRF

[18] utilizes an automatic encoder mechanism to filter irrelevant

social relationships and attempts to construct new neighbors

to combat the noise of social information. Furthermore, SPEX

[29] effectively combines the influence of social homophily and

modeling it through multitasking learning and GNNs. EIISRS

[30] proposes a social influence learning model to derive basic

influence patterns in user relationships, overcoming sparsity

while also modeling the influence of neighbors. BiasRec [31]

utilizes the calculated bias score to mitigate the effect of non-

preference factors, thereby addressing the inherent issues of

data sparsity and preference bias in SocialRS. Our approach

diverges from existing methodologies by considering the dif-

ferences in users’ sensitivity to noise and further characterizing

the social stability of users under different social views through

consistency factors. This not only distinguishes the influence

of different users, but also provides supervision for subsequent

user-item interaction data augmentation via the transformation

of probability vectors.

For the second challenge, the mainstream method integrates

user-item interaction information and social information by em-

ploying multiview joint training or hypergraphs. In recent years,

SEPT [24] has adopted ternary self-supervised training to cap-

ture more supervised signals; MHCN [23] uses a hypergraph to

improve complex social relationships and enhances social rec-

ommendations by utilizing higher order user relationships. To

further alleviate the problems of overfitting and noise, DESIGN

[21] combines knowledge distillation [32] as a novel cosuper-

vision concept with social networks for the first time. GDMSR

[25] introduces a preference-guided denoising framework that

optimizes social graph denoising during the recommendation

model learning process by modeling the confidence of social

relationships. In contrast, our method incorporates the social

stability of users as a guiding factor, directly influencing the

augmentation process of the interaction graph, thereby facili-

tating the optimization of auxiliary contrastive learning tasks.

DSL [26] preserves useful social relationships to enhance user-

item interaction modeling and enables personalized cross-view

knowledge transfer through adaptive semantic alignment in the

embedding space. In contrast, our approach utilizes users’ social

embeddings solely for the probability-guided process, avoiding

the residual social noise caused by incomplete denoising during

joint optimization from interfering with recommendation tasks.

In the latest work, ESGL [33] introduces a scale regularization

module and joint SSL strategies to address the problems of

vector scale distortion and over-smoothing. GBSR [34] learns

denoised social structures through information bottleneck
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methods, and identifies and reduces redundant social rela-

tionships. TMBCL [35] proposes a kind of time-aware graph

neural network that incorporates temporal information and

multibehavioral interactions into SocialRS. To sum up, rather

than treating social encoding as a solitary task like the meth-

ods mentioned above, we transform the consistency of various

augmented social information into guiding factors that serve

as a bridge to direct the augmentation process of the user-item

interaction view.

B. Contrastive Learning for Recommendation

Contrastive learning (CL) [36], [37], emerging as a prevalent

SSL paradigm in recent years, maximizes mutual information

[38] through the optimization of positive and negative sam-

ple pairs. As an upstream task, the CL method facilitates the

acquisition of a discriminative representation space, wherein

similar samples are mapped to proximate regions while retain-

ing distinctiveness for dissimilar samples, effectively enhancing

performance in downstream tasks. Recent investigations [39],

[40], [41], [42] in contrastive learning have indicated that graph

structures undergoing subtle perturbations exhibit comparable

semantic properties. By comparing views derived from diverse

perturbations, shared invariances are acquired through the uti-

lization of structural perturbations as self-supervisory signals.

Prominent variations of graph perturbations encompass uniform

node dropout, edge dropout, and random walks, among other

techniques.

According to the classification method in the work [43],

views with different structures can be divided into same-scale

contrast and cross-scale contrast. The strategy of same-scale

contrast is currently widely used in recommendations and is

usually further subdivided into local–local and global–global.

For local level contrast, the dropout operation is usually used to

form a local disturbance view. SGL [44] adopts three dropout

methods to obtain augmented subgraphs. Subsequently, some

work [45], [46], [47] have carried out a series of variant op-

erations on SGL, such as changing the augmentation method

or simplifying coding. HHGR [48] adopts the double-scale

node dropout method and applies it to group recommendation

scenarios. PCRec [49] uses the random walk strategy to sample

the ego network to generate self-supervised signals. For global

level contrast, as an architecture for generating global views,

it is commonly used in sequence recommendations. CL4SRec

[50] uses augmentation operators and generates negative sample

sequences for input to the encoder to generate sequences and

user representations. DHCN [51] introduces hypergraphs to

generate views of different sessions and model positive and

negative samples.

III. PROBLEM FORMULATION

In this section, we provide formulaic definitions for two

necessary data structures, i.e., social network and user-item in-

teraction graph. Following that, we articulate a comprehensive

problem formulation that underlies our social recommendation

framework. To enhance clarity, Table I summarizes some key

notations and definitions used in this article.

TABLE I
SUMMARY OF KEY NOTATIONS AND DEFINITIONS

Notation Definition

U , I Set of users and items
m,n Number of users and items
Gr, Gs User-item interaction graph and social networks
Vu, Vi Nodes of users and items
E Edges connecting users with interacted items in user-item bipartite graph
Eu Edges of social relationships between users in social networks
R, S User-item adjacency matrix and user–user adjacency matrix

e
0
u, e

0
i

Initial embeddings of users and items
Θ Set of model parameters

ρsn Hyperparameter for initial social view augmentation adjustment

G̃1, G̃2 Two randomly augmented social views
AF , AS The ternary social view and the sharing view
Mu, u ∈ U Set of other users in the view that are associated with a certain user
L Number of propagation layers
φ(·) Social view encoder
s(·) Cosine similarity function

cFu , cSu Structural consistency factors generated from two augmented social views

pτ Hyperparameter for min–max normalization adjustment
ρa Hyperparameter for the user-associated probability adjustment

pFu , pSu Probability vectors generated from ternary social view and sharing view

R̃1, R̃2 Two augmented user-item interaction views
Nu, u ∈ U Set of items that interact with a certain user
Ni, i ∈ I Set of connected users for a certain item
xu, xi Embeddings of users and items in final output
r̂ui Final recommendation score for a certain user and a certain item
τ Temperature hyperparameter for contrastive learning loss
β Hyperparameter for contrastive learning loss weight adjustment

User-Item Interaction Graph. Assuming there are m users

in the user set U = {u1, u2, . . . , um}, and n items forming the

item set I = {i1, i2, . . . , in}. The user-item interaction graph is

defined as Gr = {Vu,Vi, E} : U × I, where Vu and Vi represent

the user and item nodes, respectively, and E represents the edges

connecting users and items that share an interactive relation-

ship. Correspondingly, to facilitate storage and computation of

Gr, we define R∈ R
m×n as user-item interaction matrix, where

element ru,i = 1 in the matrix represents that user u ∈ U has

had interaction with item i ∈ I, otherwise ru,i = 0.

Social Network. From a dataset encompassing social net-

works defined as Gs = {Vu, Eu} : U × U , we can also extract

social relationships among users who have item interactions to

form the social matrix S ∈ R
m×m, where element in the matrix

si,j = 1 indicates that there is a social relationship between two

users ui, uj ∈ U . In contrast, a value of si,j = 0 signifies the

absence of a social relationship between the two entities.

Problem Statement. We formally define the task as follows:

Input: user-item interaction data R and social relationship data

S . Output: A learning function F = (u, i|R,S,Θ) that used to

predict the set of items that user u(u ∈ U) would like to interact

with, where Θ represents the model parameters.

IV. METHODOLOGY

The DSVC structure proposed in this section is shown in

Fig. 3. The overall model can be divided into three parts:

1) Calculation of Consistency Factors: It introduces social

networks to supplement user-side information and gener-

ates two augmented views using ternary closure augmen-

tation to explore implicit social relationships. We further

generate consistency factors between the user represen-

tations encoded from the social views.

2) Social Relations Guided Augmentation: It utilizes an

innovative probability-guided node dropout approach,
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Fig. 3. Overall architecture of DSVC. The calculation of consistency factors part contributes to the augmented user representation consistency information,
while the social relations guided augmentation part provides probability-guided interaction information. Subsequently, the model optimization part integrates
the auxiliary self-supervised task and recommendation task and then optimizes the model parameters.

wherein the inclusion or exclusion of each user node

is determined by the specific consistency factor, rather

than the random augmentation strategy employed in tra-

ditional contrastive learning methods.

3) Model Optimization: It integrates the primary recommen-

dation task with an auxiliary self-supervised task and iter-

atively optimizes the model parameters to attain enhanced

recommendation performance.

A. Calculation of Consistency Factors

1) Social View Discrimination Process: In user social data,

high-quality social relationships are significantly beneficial for

recommendations, as there exists a strong preference influence

among users who establish relationships. However, recent work

[25] suggests that in real-world SNs, most social relationships

are formed independently of user preferences, which suggests

they are typically not beneficial for recommendation purposes.

Integrating all social ties without discrimination is likely to

inject noise and subsequently diminish recommendation per-

formance. Inspired by prior works [44], [52] that focus on

generating diverse views through self-discrimination for con-

trastive learning, we generate two augmented social views on

the original social network by randomly dropout edges. The

formula is expressed as follows:

G̃1 = (Vu,M1 ⊙ Eu), G̃2 = (Vu,M2 ⊙ Eu) (1)

where G̃1, G̃2 respectively represent two augmented views; Vu

represents the user node of the original social view S; Eu is

the edges between nodes, representing the social relationships

between users; ⊙ represents element-wise product; M1,M2 ∈
{0, 1}|Eu| is the masking vector for dropping edges, and its

generation probability is controlled by hyperparameter ρsn.

2) Generation of Augmented Social Views: We use the

ternary closure operation to construct two augmented views,

including the ternary social view, which captures stable triangle

social relationships among users, and the sharing view, which

represents social connections between users who share inter-

acted items. To elucidate the concept that refers to the main-

tenance of the integrity of reliable social relationships while

mitigating noise, we offer the following two explanations. First,

from the perspective of social influence, the ternary social view

is interpreted as reflecting users’ interest in expanding their

social circles, while the sharing view describes users’ interest

in sharing preferred items with friends. Second, from the per-

spective of social homophily, if two individuals share common

friends or interests in the same item, they are more likely to

establish connections. Hence, these justify the use of the ternary

closure operation to augment crucial ties. To further explain the

form of ternary closures, we give the following examples:

From the intuitive example in Fig. 3, we can observe that

taking the users u1, u3, u6 that were not dropped during the aug-

mentation process as an example. If they are “friends” with each

other, the edges between these three users will be preserved in

the ternary social view. Similarly, if users u1, u6 have interacted

with the same item in the user-item interaction graph, the edge

between these users will be preserved in the sharing view.

We can use matrix multiplication to extract the above two

types of views. Let AF ∈ R
m×m and AS ∈ R

m×m repre-

sent the user adjacency matrix involved in these two types of

relationships. They can be calculated by

AF = (G̃1 · G̃1)⊙ G̃1, AS = (R · R⊤)⊙ G̃2 (2)

where the purpose of using matrix multiplication operations

G̃ · G̃ and R · R⊤ is to accumulate the paths that connect two

users by sharing friends (items), and then make these paths into

a triangle through Hadamard product ⊙G̃.

According to the above paradigm, the original social view

is augmented to generate the ternary social view representing

strong social relationships and the sharing view representing

common preferences. To efficiently extract high-order user fea-

tures from these three views, we use LightGCN as the social

encoder to transform initial user embedding into a higher order

and trainable form. The formula definition of a social encoder
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is as follows:

e
(l)
u =

∑

u∈Mu

1

|Mu|
e
(l−1)
u (3)

where Mu represents the set of other users in the view that

are associated with user u; e
(l)
u represents the user embedding

representation of layer l, and the final user embedding represen-

tation eu output by the encoder is obtained by weighted average

calculation of each layer embedding. As illustrated in Fig. 3, the

social encoder performs multilayer graph convolution opera-

tions with the initial user embedding e0
u. It operates individually

on the original view S , the ternary social view AF , and the

sharing view AS , resulting in eu, eFu , and e
S
u , respectively.

B. Social Relations Guided Augmentation

1) User Consistency Factor Generation Process: Inspired

by recent research on graph structure consistency [53], [54],

our DSVC aims to explore the consistency attributes of each

user based on augmented views, which measure their resistance

to noise effects. Specifically, we define cFu as the consistency

factors between the user embeddings generated from the ternary

social view and the original social view, while cSu represents

the consistency factors between the user embeddings generated

from the sharing view and the original social view. The consis-

tency factors between representations encoded from different

views are calculated as follows:

cFu = s(φ(e0
u, AF ), φ(e0

u, S)))

cSu = s(φ(e0
u, AS), φ(e0

u, S))) (4)

where φ(·) represents the social view encoder mentioned in

(3); e
0
u represents the initial user embedding representation;

AF , AS represents the ternary social view and sharing view,

and S represents the original social view; s(·) represents the

cosine similarity function.

Based on the above definitions, it can be observed that when

the consistency factor cu associated with a user is large, their

sensitivity to changes in topological information decreases, in-

dicating a higher resistance to noise. Consequently, if user u is

more susceptible to social network noise compared to another

user u′, it is more likely that their respective consistency factors

will follow the relationship cu < cu′ . Thus, the consistency

factor represents the social stability of users under different

social views. This not only integrates the robust features of

different views to enhance model adaptability in sparse social

networks, but also provides supervision for subsequent user-

item interaction data augmentation through the transformation

of probability vectors, indirectly alleviating its inherent sparsity.

2) Probability-Guided Augmentation: Recently, certain ap-

proaches [44] have been investigated for augmenting user-

item interaction views using random dropout. However purely

random augmentation is not conducive to preserving crucial

structural information, and residual noise continues to mislead

collaborative information. Users with higher consistency fac-

tors in social networks have stronger antiinterference ability to

noise. Besides, they also have more potential contributions to

modeling and characterizing the true interests of other users.

Therefore, to capture important interaction structure informa-

tion, we propose the following series of usability expansion

processing for the consistency factor to generate a probabil-

ity vector, which can better guide the dropout process on the

interaction graph. Taking sharing view AS as an example, its

corresponding probability vector pSu represents the estimated

probability of dropping user nodes u and all their edges on

interaction graph R. The formula is calculated as follows:

wS
u = exp(cSu)

p′
S
u =max

(
wS

u − wmin

wmax − wmin
, pτ

)

pSu = ρa · µp′ · p′
S
u (5)

where wS
u in the first sub-equation denotes the impact level

exerted by alterations in social relationships on user u, which

is directly proportional to the associated consistency factor cSu
through the exponentiation operation; Subsequently, to deter-

mine user dropout probability, we use min–max normalization

in the second sub-equation according to their corresponding

impact level, preventing users from mistakenly discarded due

to minor disturbances. Specifically, we introduce a truncation

probability pτ to mitigate the effects of low normalized values,

thereby generating the intermediate variable p′
S
u , which reflects

the proportional relationship between the normalized impact

level and dropout probability. Finally, to generate the dropout

probability pSu in the third subequation, we use the mean value

µp′ of the intermediate variable to counteract extreme values,

and employ hyperparameter ρa to enable manual intervention.

For the ternary social view, the probability vector pFu is obtained

similarly.

In contrast to previous dropout approaches that treat nodes or

edges equally, our method increases the likelihood of dropping

out social users who are easily disturbed. This minimizes the

inclusion of noisy relationships generated by these users, which

can be unhelpful or even disruptive to recommendation perfor-

mance. The probability vectors guide the generation of user-

item augmented views, ensuring a greater proportion of stable

social users whose preferences are more positively influenced

by social interactions. This approach achieves stable social rela-

tionship mining and enhances the effectiveness of probability-

guided interaction augmentation.

When the probability vectors are pFu and pSu , two masking

vectors M
1
u, M

2
u ∈ {0, 1}|Vu| are further generated based on

the Bernoulli distribution. The augmentation process of ap-

plying it to user-item interaction diagram R= {Vu,Vi, E} is

as follows:

R̃1 = (M1
u ⊙ V, E), R̃2 = (M2

u ⊙ V, E). (6)

User nodes in R dropout connected interaction edges based

on its corresponding probability, generating two augmented

user-item interaction views R̃1 and R̃2, respectively defined

as user-item augmented interaction view I and user-item aug-

mented interaction view II.
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C. Model Optimization

In the model loss optimization section, we design a joint

embedding space shared by the main recommendation task and

the auxiliary self-supervised task, which further couples the

BPR loss and InfoNCE loss framework.

Based on the original and two augmented interaction views,

we employ an interaction encoder based on LightGCN to gen-

erate representations of users and items. Specifically, we utilize

a higher order message propagation mechanism to encode the

collaborative information from user-item interactions. Assum-

ing a pair of initial inputs are (e0
u, e

0
i ), the formula for the

interaction encoder is expressed as follows:

e
(l+1)
u =

∑

i∈Nu

1√
|Nu||Ni|

e
(l)
i , e

(l+1)
i =

∑

u∈Ni

1√
|Ni||Nu|

e
(l)
u

(7)

where e
(l)
u and e

(l)
i represent the encoded representations of user

u and item i on the lth propagation layer of the L layer graph.

Nu and Ni represent the set of items that interact with user u
and the set of connected users for item i, respectively. Finally,

each layer of embedding is combined to form the final user and

item embeddings xu and xi.

In this approach, we feed the initial pairs of user and item

embeddings (e0
u, e

0
i ) into the interaction encoder. They inde-

pendently undergo convolution operations with the original

interaction graph, augmented interaction view I, and augmented

interaction view II. After applying weighted averaging to the

outputs at each layer, the final pair representations of the

user-item embeddings are denoted as (xu,xi), (x
1
u,x

1
i ), and

(x2
u,x

2
i ).

Then, we perform dot product prediction on the user and item

representation xu, xi generated based on the original inter-

action view encoding, and compute the final recommendation

score r̂u,i as follows:

r̂u,i = x
⊤
u · xi. (8)

Moreover, the calculation method for BPR loss Lrec main-

tained by the main recommendation task is as follows:

Lrec =
∑

u∈U

∑

i∈Nu

∑

i′ /∈Nu

− log σ(r̂u,i − r̂u,i′) (9)

where σ(·) represents the sigmoid activation function; i′ /∈Nu

represents any item that u has not interacted with, which is ob-

tained through random sampling; r̂u,i represents the predicted

score for item i ∈ Nu; r̂u,i′ is the rating of the model on any

item that the user u has not interacted with.

In addition, the model performs contrastive learning on user

and item representation (x1
u,x

1
i ) and (x2

u,x
2
i ) generated based

on two augmented interaction view codes. Specifically, posi-

tive and negative samples are generated from two embeddings

of user u or item i generated by two augmented views, and

the MI of samples is maximized by minimizing the InfoNCE

loss function, to achieve the effect of making positive samples

closer and negative samples more distant. The InfoNCE losses

LCL1
and LCL2

proposed for contrastive learning to optimize

Algorithm 1: The Algorithmic Procedure of DSVC

Input: User-Item Interaction Graph Gr, Social

Networks Gs, Randomly generated node

embedding E

Output: Recommendation lists

1 Social view discrimination with Eq. (1);

2 Augmented social views AF ,AS generation with

Eq. (2);

3 for each iteraction do

4 Consistency factor generation cu with Eq. (3)–(4);

5 Probability vectors generation pu and corresponding

mask vectors Mu with Eq. (5);

6 Probability guided user-item graph augmentation R̃
with Eq. (6);

7 for each batch do

8 User and item embedding eu, ei generation with

Eq. (7);

9 Model prediction r̂u,i with Eq. (8);

10 Joint optimization with Eq. (9)–(11);

11 end

12 end

the representation of users and items, are computed separately

as follows:

LCL1
=

∑

u∈U

− log
exp(s(x1

u, x
2
u)/τ)∑

u′∈U,u′ 6=u exp(s(x
1
u, x

2
u′)/τ)

LCL2
=

∑

i∈Nu

− log
exp(s(x1

i , x
2
i )/τ)∑

i′∈I,i′ 6=i exp(s(x
1
i , x

2
i′)/τ)

(10)

where u′ is a negative sample of user u, representing any other

user except u in the training set; i′ is a negative sample of item

i, representing any item in the training set that the user u has

not interacted with; τ is the temperature parameter; s(·) is the

cosine function that used to characterize the similarity between

the sampled pairs.

According to the above two loss functions, the comprehen-

sive optimization loss of this model is

L= Lrec + β(LCL1
+ LCL2

) + λ‖Θ‖2
2 (11)

where the hyperparameter β is used to adjust the proportion of

InfoNCE loss function LCL1
,LCL2

from two augmented inter-

action views respectively in the whole loss function; Θ is the

parameter set of our model, while L2 regularization parameter

λ can adjust its weight value to prevent overfitting. The overall

algorithm flow of DSVC is shown in Algorithm 1.

D. Model Analysis of DSVC

1) Analysis of Consistency Factor: In DSVC, we utilize

the user’s consistency factor to guide the process of user-item

interaction graph augmentation. In this section, we conduct an

in-depth exploration of the potential advantages of consistency

factors in SSL tasks.
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Fig. 4. Graphical trend of gradient function g(θ) under τ = 0.2 and
τ = 0.3.

Assuming we use the consistency factor cu to measure the

consistency of user u. So we can define users with high consis-

tency as

uc = {u|c(u)≫ η ≥ ‖c(u)‖} (12)

where η is the fixed threshold with user average consistency

‖c(u)‖ as lower bound. For users with high consistency, it has

a more stable feature representation.

For binary classification tasks, positive samples are defined

as UP , negative samples as UN , and hard negative samples as

UH . We commonly consider negative samples exhibiting cosine

similarities with positive samples within the range of (θ0, 1]
as hard negative samples, where |θ0|< ǫ is the lower bound

for separating. From a combined perspective, users with high

consistency in positive samples not only have easily distinguish-

able features, but also exhibit clear preferences and stable be-

havioral patterns. Accordingly, they have a lower likelihood of

generating false hard negative samples compared to other users

in positive samples. The above discussion can be expressed

through probability formulas as follows:

P{s(xu,xu′)> θ0 | c(u)≫ η, u′ ∈ UN \ UH}

< P{s(xu,xu′)> θ0 | c(u)≤ η, u′ ∈ UN \ UH}

P{s(xuc
,xu′

f
)> θ0}< P{s(xu,xu′

f
)> θ0} (13)

where u′
f = {u′ | u′ ∈ UN \ UH} is false hard negative sam-

ples. To further explain the reason for its judgment, we regard

xu′

f
as the soft negative sample representation that mistakenly

falls in the area belonging to hard negative samples during the

similarity calculation with the positive sample representation.

We hypothesize that such misclassification could potentially

lead to a substantial gradient bias in the model optimization

process.

To identify the main causes of gradient bias, we conduct in-

depth discussions on the structure of contrastive loss. Based on

previous works [44], we assume that the estimated similarity

between user node u and its negative sample u′ is ŝ(xu,xu′),
abbreviated here as θ, and the obtained contrast gradient g(θ)
can be expressed as

g(θ) =
√

1 − θ2 exp

(
θ

τ

)
. (14)

As shown in Fig. 4, we present the trend graph of the gradient

function under τ = 0.2 and τ = 0.3. It is evident from visual

Fig. 5. Average running time comparison of DSVC, MHCN, and SEPT on
2 and 3 GNN layers.

observation that the gradient of the model experiences a sig-

nificant increase with a high similarity θ (e.g., 0.25 ≤ θ ≤ 0.9).

Specifically, the gradient descends most rapidly when encoun-

tering hard negative samples. Consequently, contrastive loss

compensates for the weakness of the BPR loss in effectively

mining hard negative samples. However, the presence of false

hard negative samples leads to a sharp increase in gradients,

which in turn results in biased learning performance of the

model. Drawing from our prior discussion on consistency fac-

tors, we can opt for stable user representations that more readily

distinguish features as positive samples. This approach can

minimize the model’s likelihood of sampling false hard negative

samples, thereby reducing the gradient bias effect.

2) Model Time Complexity Analysis: We analyze time com-

plexity from the three key components of the DSVC frame-

work. 1) For the social view generation module, we only need

less than 4 ×O(|S| × d) time complexity to generate the user

embeddings through the social encoder, as both AF and AS

are sparser than the original social view. Furthermore, due to

the high sparsity shared by interaction and social data, the

computational complexity of AF and AS based on sparse

matrix multiplication is negligible. 2) For the social relations

guided augmentation module, we only require O(2 × |V| × d)
time complexity to calculate the consistency factors. 3) For

the model optimization module, the graph-based CF requires

O(|E| × d) time complexity for modeling user-item interac-

tion. The time complexity of calculating the InfoNCE loss is

O(B × (|U|+ |I|)× d), where B represents the number of

unique users and items in the batch. Based on the above anal-

ysis, our DSVC achieves comparable time complexity when

competing with state-of-the-art social recommendation models

[23], [24]. To validate in practice, we train our method, MHCN,

and SEPT with different GNN layer settings, and the average

training time is shown in Fig. 5. Our method runs the fastest on

FilmTrust and is the second fastest on Douban-book. Although

it is slightly slower on Yelp2018 compared to the other mod-

els, we achieve significant improvements in recommendation

performance within comparable time complexity.

V. EXPERIMENTS

Conduct extensive experiments to verify the performance of

our DSVC model by answering the following questions:

1) RQ1: How does our DSVC perform when competing with

different types of recommendation methods?
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TABLE II
STATISTICAL ANALYSIS OF THE DATASET USED

IN THE EXPERIMENT

Datasets Yelp2018 Douban-Book FilmTrust

# User 45 919 13 025 1509
# Item 45 538 22 348 2072

# Interaction 1 183 610 598 420 35 497
# Relation 709 459 169 150 1853

U-I Density 5.66 × 10−4 2.06 × 10−3 1.14 × 10−2

U-U Density 8.01 × 10−4 1.04 × 10−3 1.92 × 10−3

2) RQ2: How do the different key modules in our DSVC

framework contribute to overall performance?

3) RQ3: How do different hyperparameter settings (e.g.,

social network dropout rate ρsn and temperature constant

τ , etc.) affect DSVC?

4) RQ4: How is the robustness of DSVC to the noise and

sparsity disturbance compared to the existing models?

5) RQ5: How interpretable is DSVC in real situations?

A. Experiment Settings

1) Datasets: We conduct experiments on three public

datasets collected from different real-life platforms: Yelp2018

for commercial venue recommendations, Douban-book for

book recommendations, and FilmTrust for movie recommen-

dations. Table I shows the statistical information of our experi-

mental datasets, which have different interaction densities and

social network characteristics.

2) Baselines: To explore the performance improvement of

this model compared to other models using similar methods,

we selected the following 12 recommendation models as the

baselines for comparative experiments:

a) MF [8]: It mainly divides the interaction matrix into user

and item matrices, and reconstructs the interaction matrix

through relearning representation.

b) TBPR [55]: It introduces social networks and the concept

of strong weak connections to mine more auxiliary social

information.

c) DiffNet [16]: It proposes a deep influence propagation

model to simulate the influence of higher order recursive

social diffusion processes on users.

d) LightGCN [13]: It simplifies GCN and uses it in the

collaborative filtering task of interaction graph, which has

achieved significant performance improvement.

e) ESRF [18]: It utilizes a GCN-based adversarial network

framework to capture higher order information and re-

duce the impact of noise, while also using ternary closures

to augment relational data.

f) Motifs-Res [56]: While introducing self-supervised

learning into social recommendation, this model also

proposes a cross motif matching representation model

combining attention mechanism and multichannel

information.

g) SEPT [24]: This model constructs a social relation-

ship awareness framework based on ternary training and

self-supervised learning. It uses the user’s social infor-

mation to augment the social view and then builds three

graph encoders on the augmented view.

h) MHCN [23]: It proposes a multichannel convolutional

network based on hypergraph, and combines self-

supervised learning to use high-order user relations

to enhance social recommendation while compensat-

ing for aggregation losses. It is worth emphasizing that

in the experiment section, we adopt the variant S2-

MHCN with a self-supervised learning module as our

baseline.

i) DESIGN [21]: It proposes a social relationship graph

augmentation network based on knowledge distillation,

and uses both global and local views to train simultane-

ously.

j) DSL [26]: It proposes a self-enhanced learning frame-

work that maintains crucial social connections and sup-

ports personalized cross-view knowledge exchange.

k) DcRec [52]: It approach derives disentangled user rep-

resentations from both interaction and social spheres,

utilizing contrastive learning to aid knowledge transfer

between these representations, thereby improving social

recommendations.

l) LightGCL [47]: It uses singular value decomposition for

contrastive augmentation of the user-item graph, preserv-

ing semantic structures and enhancing robustness.

3) Evaluation Metrics: We perform a random partitioning

of the user-item interaction datasets, allocating 80% of the data

for the training set and reserving 20% for the testing set. The

evaluation metrics used in the experiment are uniformly the hit

rate HR@K, recall rate Recall@K, and normalized cumulative

loss gain NDCG@K commonly used in Top-K ranking recom-

mendation tasks, where we set K to 10 and 20.

4) Parameter Settings: Our DSVC is implemented us-

ing PyTorch with NVIDIA GeForce RTX 3090, while most

baseline models used for comparative experiments are eval-

uated based on the SELFRec [57] framework. For the sake

of fairness, the embedding representation dimension of all

models is set at 64, and the learning rate is adjusted be-

tween {1e−4, 1e−3, 5e−3, 1e−2} according to the different con-

vergence rates of different models. The batch size is fixed

at 2048.

In the fixed parameter section of the experiment, the dimen-

sion represented by each user and item node embedding is 64,

the number of convolutional layers in both the social encoder

and interactive encoder is L= 3, and the learning rate is α=
0.001; In the variable hyperparameter section, the parameter

ρsn used to control the social view edge drop process is adjusted

within the range of {0.1, 0.2, 0.3, 0.4, 0.5}, the parameter

ρa used to control the impact of the mean on probability in

the probability generation vector generation process is adjusted

within the range of {0.1, 0.12, 0.14, 0.16, 0.18, 0.2}, and

the parameter τ used to control the proportion of hard negative

sampling in the InfoNCE loss is adjusted within the range of

{0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. The adjustment range of

parameter β used to control the proportion of InfoNCE loss in

the total loss is {0.1, 0.2, 0.3, 0.4, 0.5}.
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TABLE III
COMPARISON OF PERFORMANCE EVALUATION VALUES BETWEEN DSVC AND DIFFERENT BASELINE MODELS IN YELP2018, DOUBAN-BOOK,

AND FILMTRUST DATASETS

Dataset Metric MF TBPR DiffNet LightGCN ESRF Motifs-Res SEPT MHCN DESIGN DSL DcRec LightGCL DSVC

Yelp2018

HR@10 0.02910 0.02240 0.03357 0.03626 0.03714 0.04012 0.03593 0.03326 0.39660 0.03313 0.03937 0.03924 0.04239

Recall@10 0.03307 0.03125 0.03354 0.04116 0.04185 0.04815 0.04122 0.03649 0.04357 0.03120 0.04720 0.04821 0.04855
NDCG@10 0.02750 0.03234 0.02051 0.03453 0.03526 0.04111 0.03465 0.03115 0.36600 0.02620 0.04000 0.04088 0.04219

HR@20 0.04964 0.05953 0.05613 0.06036 0.06238 0.06246 0.06159 0.05894 0.06394 0.05158 0.06432 0.05847 0.07118
Recall@20 0.05578 0.06286 0.06086 0.06730 0.06922 0.06945 0.06955 0.06581 0.07204 0.05170 0.07760 0.07909 0.08028

NDCG@20 0.03592 0.04115 0.03834 0.04363 0.04395 0.04417 0.04476 0.04262 0.04614 0.03360 0.05070 0.05183 0.05259

Douban-book

HR@10 0.05778 0.07925 0.06646 0.07048 0.07338 0.07639 0.07310 0.07554 0.07332 0.06864 0.08067 0.07715 0.08311
Recall@10 0.08728 0.08769 0.08836 0.07888 0.06546 0.07677 0.10272 0.10430 0.10402 0.05990 0.11400 0.10391 0.11445

NDCG@10 0.09559 0.10720 0.10188 0.09887 0.10671 0.10274 0.12035 0.12370 0.09420 0.07240 0.13290 0.12778 0.14051
HR@20 0.09415 0.10152 0.10234 0.11189 0.11435 0.11084 0.11545 0.11230 0.11625 0.09132 0.11130 0.11055 0.12952

Recall@20 0.12902 0.13054 0.13110 0.14990 0.15301 0.15736 0.15470 0.15128 0.15873 0.09700 0.16100 0.14565 0.17464
NDCG@20 0.10424 0.10460 0.10450 0.12741 0.12952 0.13395 0.13137 0.13257 0.13495 0.07950 0.13920 0.13296 0.15287

FilmTrust

HR@10 0.71403 0.71390 0.68001 0.72229 0.71955 0.71896 0.71875 0.72418 0.72300 0.72016 0.71926 0.63182 0.72583
Recall@10 0.73226 0.59100 0.69427 0.73812 0.73521 0.51340 0.73219 0.73678 0.73534 0.71470 0.71988 0.71129 0.74333

NDCG@10 0.57758 0.49920 0.55158 0.58478 0.57849 0.58670 0.57814 0.59677 0.59492 0.56520 0.56642 0.50598 0.60012
HR@20 0.80778 0.82261 0.81983 0.82370 0.82418 0.82562 0.82724 0.82606 0.82574 0.81930 0.82684 0.77257 0.83137

Recall@20 0.83779 0.84388 0.84628 0.85180 0.85236 0.85424 0.85432 0.85378 0.85254 0.82700 0.82426 0.70471 0.86178
NDCG@20 0.60305 0.60853 0.61322 0.61507 0.61526 0.61691 0.61560 0.63294 0.61821 0.59830 0.59725 0.52832 0.63827

Note: The best results are displayed in bold, while the second-best results are highlighted below.

B. Comparison of Performance (RQ1)

In this part, we conduct an overall performance evaluation

of DSVC and the mentioned baselines. Table III shows the

experimental results of each model on three datasets, from

which the following observations can be obtained:

1) Our DSVC consistently outperformed all baselines in

three evaluation metrics, verifying the effectiveness of us-

ing augmented social networks as the guidance for com-

parative tasks. While the evaluation scenarios are diverse

due to variations in interaction and social information

characteristics, the consistently superior results highlight

the broad applicability and versatility of DSVC.

2) SN-based baselines like DiffNet, ESRF, MHCN, and

DESIGN directly incorporate social information into CF-

based recommender systems. By comparing our DSVC

with these models, we observe that DSVC effectively uti-

lizes augmented social information as a guiding task for

contrastive learning. This approach successfully avoids

the inclusion of noisy and sparse social information

in collaborative filtering, resulting in significant perfor-

mance improvements.

3) By comparing the performance of Motifs-Res, SEPT, and

MHCN within the SSL framework, we can observe that

contrastive learning, which is widely adopted as a self-

supervised learning paradigm, harnesses the benefits of

augmenting supervisory signals and mitigating noise in

recommender systems. Notably, concerning the baseline

models SEPT and MHCN that incorporate both SSL and

SNs, the success of our DSVC demonstrates that leverag-

ing social networks for probability-guided augmentation

on user-item interaction graphs has more effectiveness in

crucial social information mining.

By comparing the performance of DSL, DcRec, and

LightGCL, we identify significant limitations in these

models regarding the utilization of social information

and the enhancement of robustness. DSL exhibits poor

performance in the denoising process of social en-

coding, failing to effectively eliminate residual noise.

DcRec introduces redundant social encoding, which

constrains the identification of stable preferences. Mean-

while, LightGCL lacks effective integration of social

supervision signals. In contrast, DSVC leverages prob-

abilistic enhancement techniques to more effectively

identify and utilize stable relationships within social net-

works, thereby providing more precise social guidance in

contrastive learning.

C. Ablation Experiment (RQ2)

To explore whether each module in DSVC has a significant

improvement in model performance, the ablation experiment

section mainly conducts comparative experiments on three vari-

ants of the model:

1) w/o CL: A variant of the original model that is discarded

from the auxiliary SSL module. The model only works

on the main recommendation task, which degenerates to

LightGCN to a certain extent.

2) w/o PB: A variant of the original model that replaces the

social probability-guided interaction view augmentation

process with random augmentation. The model loses the

ability to leverage augmented social self-supervised sig-

nals, resulting in the absence of the influence of the social

network on the SSL process of the recommendation task.

3) w/o DV: A variant of the original model that only uses

two randomly augmented social views instead of using

ternary closure augmentation. The arbitrary augmentation

approach largely retains numerous irrelevant and noisy

social information, which in turn obstructs the subsequent

robust assessment of users’ susceptibility to noise.

Table IV shows the performance comparison of the original

model and its three ablation variants under three evaluation

metrics. From the ablation results, we can analyze and obtain

the following observation results:

1) From the significant performance degradation observed

in the variant “DSVC w/o CL” compared to the origi-

nal model, we can observe that solely employing GCN

to enhance the recommendation task is insufficient.

The utilization of auxiliary self-supervised learning is

necessary to better discover the latent information within
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TABLE IV
ABLATION STUDY OF DSVC AND ITS VARIANTS ON REAL DATASETS

Model Yelp2018 Douban-Book FilmTrust
Metrics@20 HR Recall NDCG HR Recall NDCG HR Recall NDCG

DSVC 0.07118 0.08028 0.05259 0.12952 0.17464 0.15287 0.83137 0.86178 0.63827

DSVC w/o CL 0.06114 0.06886 0.04500 0.11091 0.14770 0.12528 0.82193 0.84985 0.61584
DSVC w/o PB 0.07049 0.07946 0.05200 0.12677 0.17121 0.14862 0.82137 0.85415 0.63053
DSVC w/o DV 0.07042 0.07938 0.05182 0.12697 0.16970 0.14887 0.82370 0.85207 0.62650

Fig. 6. Impact of probability generation vector generation process related
parameters ρsn and ρa. (a) Yelp2018. (b) Douban-book. (c) FilmTrust.

the interaction graph, thereby exerting a more substantial

influence on the recommendation task.

2) From the experimental results of the variant “DSVC w/o

PB,” it is evident that employing random augmentation

on the interaction view may potentially disrupt robust

collaborative signals and even retain biased information.

As a result, this hinders the process of transferring critical

self-supervised signals to the main recommendation task.

3) From the analysis of the experimental results of the vari-

ant “DSVC w/o DV,” we can detect that using ternary clo-

sures to further augment the SN views after preliminary

augmentation can filter out the individuals with strong

resilience to disturbances in the remaining user nodes,

thereby providing more accurate upstream information

for the subsequent node consistency factor generation

process.

D. Parameter Analysis (RQ3)

1) Impact of Probability Generation Vector Generation

Process: Throughout the entire process of probability vector

generation, the hyperparameters ρsn and ρa respectively play

critical roles in the social view augmentation and the user-

associated probability adjustment. Furthermore, we adjust ρsn
within the range {0.1, 0.12, 0.14, 0.16, 0.18, 0.2} and the

ρa within the range {0.1, 0.2, 0.3, 0.4, 0.5} on all of three

datasets. We analyze the distribution depicted in Fig. 6 sepa-

rately. 1) For the Douban-book and FilmTrust, the value ρsn =
0.2 is optimal, while for Yelp2018, it is up to 0.5. This indicates

that for views containing more noisy relationships, masking

more users can achieve more ideal augmentation effects. 2) For

Yelp and Douban-book, the value ρa = 0.1 is the best, while for

FilmTrust, it turns to 0.16. This indicates that in scenarios with

fewer socially active users, the ratio of robust users selected

should also be appropriately reduced to prevent bias in the

guidance results of downstream tasks.

Fig. 7. Impact of temperature parameter τ .

Fig. 8. Impact of weight β for contrastive loss.

2) Impact of Temperature Parameter: To investigate the

impact of temperature parameter τ on the performance of

contrastive learning, our parameter tuning experiments are

conducted on Yelp2018, Douban-book, and FilmTrust datasets

by setting ranges within τ = {0.1, 0.2, 0.3, 0.4, 0.5}. From

Fig. 7, it can be observed that the performance is best when

τ = 0.2 is present on all datasets. By observing and analyzing

the results, it becomes evident that as the dataset size increases,

the complexity and uncertainty of the data escalate. Conse-

quently, valuable nodes are at risk of being discarded, while

noisy nodes may persist. As a result, temperature parameter

τ significantly influences the performance of the SSL task,

particularly in scenarios involving larger data volumes.

3) Impact of Weight for Contrastive Loss: To explore the

proportion β of InfoNCE loss in total loss to achieve optimal

performance, our parameter tuning experiments are conducted

on the Yelp2018, Douban-book, and FilmTrust datasets by set-

ting ranges within β = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.

According to Fig. 8, we can observe that for Yelp and Douban-

book, value β = 0.1 is ideal, whereas it comes to 0.01 for

FilmTrust, and a severe underfitting problem was observed
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Fig. 9. Impact of GNN layers L for both social and interaction encoders.
(a) Yelp2018 data. (b) Douban-book data.

when β = 0.5. Given that the primary objective of the model

remains the collaborative filtering recommendation task based

on GCN, it is crucial to strike a balance with controlling the

lower proportion of self-supervised learning loss. Setting this

proportion too high may lead to issues such as gradient vanish-

ing or insufficient model performance due to the rapid descent

of gradients.

4) Impact of GNN Layers: To explore the impact of GNN

layers for social and interaction encoders on model perfor-

mance, we conducted parameter adjustment experiments on the

Yelp2018 and Douban-book datasets, with a range set within

L= {1, 2, 3, 4}. According to Fig. 9, we can observe that when

L= 3, all evaluation metrics reach their highest values, whereas

the performance of L= 2 is significantly inferior. This result

confirms the correctness and necessity of selecting L= 3 in our

model design, indicating that appropriately adding one more

propagation layer can enhance recommendation performance

under our approach.

E. Model Robustness Study (RQ4)

In this section, we investigate the robustness of our DSVC

approach to data noise and data sparsity by evaluating the model

performance on manually damaged or segmented training data,

in comparison with representative baseline methods.

1) Model Robustness Against Social Noise: To examine

the robustness of DSVC in the presence of noise disturbances,

we inject artificial noise edges of varying proportions (5%,

10%, 15%, and 20%) into the original social network through

random injection. Subsequently, we evaluated the performance

of our DSVC and two representative strong baselines, i.e., SEPT

Fig. 10. Performance on Yelp2018 and FilmTrust datasets with noise
perturbation in terms of Recall@20 and NDCG@20. (a) Yelp2018.
(b) FilmTrust data.

and MHCN, on distinct variants of Yelp2018 and FilmTrust

datasets.

Fig. 10 illustrates that our DSVC method consistently ex-

hibited the least performance degradation across all levels of

noise. We attribute our observations to the following reasons:

1) Both MHCN and SEPT demonstrate a high sensitivity to

noise across datasets of varying sizes. One plausible inference

is that the SSL tasks in MHCN and SEPT transfer more fake

social information from social networks to recommendation

tasks. They both show weak supervision over fake social re-

lations. 2) DSVC demonstrates a higher robustness to noise

and achieves a less sensitive performance degradation, which

can be ascribed to two underlying factors. First, our DSVC

augments social views through two steps: random dropout and

ternary closure, dualistically enhancing the model’s ability to

accurately identify robust users. Second, our SSL task essen-

tially focuses on augmenting user-item interaction graphs in-

stead of directly optimizing user representations generated from

social views, and the probability-guided augmentation approach

helps augmentation tasks avoid introducing noise from social

networks. As a result, our SSL task exhibits low sensitivity to

the perception of changes in social networks.

2) Model Robustness Against Social Sparsity: To examine

the robustness of DSVC in different sparse social data scenar-

ios, we divided the social network into subgraphs based on

users in different social activity ranges (e.g., 0–10, 10–20, 20–

40, 40–80, 80–200, 200–500, 500–2000) and ensured that there

was few significant difference in the number of users between

subgraphs.

Fig. 11(a) and 11(b) shows the performance changes of

DSVC compared to SEPT and MHCN, while Fig. 11(c) shows

the variance of performance σ2 on both metrics. It can be

observed that our DSVC method achieves minimal performance

fluctuations. We attribute our observation results to the follow-

ing reasons: 1) MHCN and SEPT exhibit sensitive performance

changes to data with different sparsity levels, and have the

highest performance reduction for user groups in the activity

range of 40–80. We postulate that this phenomenon could be
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Fig. 11. Performance on Yelp2018 dataset with different sparse active user
groups in terms of Recall@20 and NDCG@20. (a) Performance comparison
on Recall@20. (b) Performance comparison on NDCG@20. (c) Comparison
of overall variance of Recall@20 and NDCG@20.

attributed to a decrease in the proportion of preference-related

relationships among socially active users to the total relation-

ship, i.e., an increase in the ratio of noise-related relationships,

while the weak filtering mechanism of SEPT and MHCN limits

their ability to identify internal noise information. 2) DSVC

exhibits higher robustness to changes in social data with dif-

ferent sparsity and achieves less sensitive performance reduc-

tion, which can be attributed to our social view augmentation

approach filtering out relationships irrelevant to recommen-

dations to the maximum extent possible. Furthermore, Even

as the severity of data sparsity has intensified, we can still

capture stable users with high consistency, thereby reducing

the bias impact on the contrastive task. Therefore, our social

networks with different sparsity can exhibit relatively stable

performance.

F. Case Study (RQ5)

To verify the effectiveness and interpretability of our DSVC

in real-world scenarios, we extracted two typical examples from

the Yelp2018 dataset. We compare these two examples with

LightGCN in two aspects, i.e., recommendation results and rep-

resentation learning, to illustrate the superiority of our method

in integrating social networks into recommender systems.

1) Case Study on Recommendation Results: As shown

in Fig. 12(a), one example extracted from the dataset is a

Fig. 12. Two typical examples of DSVC versus LightGCN for highlighting
the effectiveness of social assistance. (a) Case study on recommendation
results. (b) Case study on representation learning.

set of stable ternary user relationships, represented by triple

(u244, u7111, u1073). In this ternary relationship, there are more

than ten common interactive items between users in pairs, the

stronger intensity of the color indicates the larger intersection

of interacted items, which in turn implies higher preference

similarity. The parallelogram-shaped box adjacent to each user

displays the hit items, which coincide with the test set in the

Top-20 results recommended by DSVC, LightGCN, and both

of them.

For u244, DSVC and LightGCN hit 6 and 4 items, respec-

tively, and there is an intersection (e.g., i833 and i2255); For u1073,

our LightGCN result is a true subset of the DSVC result and

also includes a intersection (e.g., i707 and i2052). From the rec-

ommendation results, it is evident that our DSVC significantly

outperforms LightGCN in personalized recommendations due

to its powerful ability to identify and extract stable relation-

ships in social networks. Furthermore, items recommended by

LightGCN are also effectively captured by our DSVC, showing

the low interference ability of our auxiliary tasks for the main

recommendation task performance.

2) Case Study on Representation Learning: Fig. 12(b)

illustrates another example extracted from the dataset, involving

user u1845 and two other users, u124 and u71, who have estab-

lished relationships with her. We separately visualize the final

encoding representations of these three users generated from

DSVC and LightGCN. Additionally, we calculate the cosine

similarity between the representations of u1845 and u124, as well

as between u1845 and u71.

In situations where social auxiliary signals are not available,

models such as LightGCN determine the similarity between

users indirectly only through their interaction history with the

same items. Consequently, in the given example, users u124 and

u71 are assigned a lower similarity, resulting in few hit items for

user u1845. In contrast, our DSVC leverages social relationships

effectively, assigning higher similarity to user u1845 and two

socially connected users with similar preferences. As a result,

DSVC significantly outperforms LightGCN by the number of

hit items.

VI. CONCLUSION

In this work, our proposed DSVC framework combines social

networks and contrastive learning organically and attempts to

alleviate data sparsity and noise issues. During the process of
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characterizing the social feature view, augmented social in-

formation was constructed to study auxiliary self-supervised

signals. This work expands the application methods of social

networks in the field of recommendation. Numerous experi-

ments conducted on several real-world datasets have shown that

DSVC has advantages over various advanced methods.
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