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Abstract—Multi-behavior Session Based Recommendations
(MBSBRs) have achieved remarkable results due to considering
behavioral heterogeneity in sessions. Yet most existing works only
consider binary or continuous behavior dependencies and aim
to predict the next item under the target behavior, neglecting
users’ inherent behavior habits, resulting in learning inaccurate
intentions. To tackle the above issues, we propose a novel
Behavior Habits Enhanced Intention Learning framework for
Session Based Recommendation (BHSBR) framework. Specifi-
cally, we focus on the next item recommendation and design a
global item transition graph to learn the behavior-aware semantic
relationships between items, in order to mine the underlying
similarity between items beyond the session. In addition, we
construct a hypergraph to extract the diverse behavior habits of
users and break through the limitations of temporal relationships
in the session. Compared to the existing works, our behavior
habit learning method learns behavior dependencies at the user
level, which could capture the user’s more accurate long-term
intentions and reduce the impact of noise behaviors. Extensive
experiments on three datasets demonstrate that the performance
of our proposed BHSBR is superior to SOTA. Further ablation
experiments fully illustrate the effectiveness of our various
modules.

Index Terms—Session based Recommendation, Multi-behavior
Recommendation, Graph Neural Network.

I. INTRODUCTION

SESSION-BASED recommendation algorithms aim to
make the next-item prediction for anonymous, temporal

sessions [1]–[3]. Due to the increasingly improved protection
of user privacy in recent years, session-based recommenda-
tions have gradually become a hot research area. Traditional
methods [4], [5] utilize Markov chains to encode sessions.
However, these methods can only predict the latter term based
on the previous one, which results in insufficient utilization
of all sequence information of the session. To address this
issue, some methods [6]–[8] leverage RNN to model sessions
and capture temporal relationships in the sequence. Recently,
due to the superiority of GNN in capturing structural features,
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many methods [9]–[11] have introduced GNN into the process
of feature learning and achieved sound results.

Whereas, the above methods only consider the macro
connectivity between items, without utilizing the complex
behavioral information between users and items, and cannot
capture fine-grained user preferences. For example, in shop-
ping scenarios, compared to products that users have only
browsed, users are clearly more interested in products that
are more relevant to those they have added to their shopping
cart or have already purchased. Therefore, when considering
behavioral information, we are better able to capture the user’s
intention. Recently, some methods have introduced multi-
behavior information into session recommendation. TGT [12]
proposed a temporal graph Transformer to capture dynamic
user-item interaction patterns by exploring the evolutionary
correlations between behaviors. MBHT [13] designed a multi-
scale transformer to learn the behavioral order patterns of
sequences and utilized hypergraphs to learn cross-behavioral
dependencies. EMBSR [14] designed multi graph to aggregate
micro-operations in sequences and utilized extended attention
mechanisms to learn binary behavior patterns.

Although these methods have achieved delightful results in
aggregating sequence representations of behavioral informa-
tion and mining relationships between behavioral dependen-
cies, there are still some issues that need to be addressed:

• Failing to learn user-level behavior habits. Current Multi-
Behavior Session-Based Recommendation methods (MB-
SBR) are limited to learning behavior dependencies at the
behavior or item level. Behavior-level methods [15], [16]
only model single behavior, and struggle with complex
multi-behavior scenarios. Item-level methods [17], though
capable of capturing cross-behavior dependencies, often
only address binary patterns or aggregate behaviors in
continuous timestamps. This limitation means they fail to
capture the full spectrum of user behavior habits towards
items. The existing approaches do not sufficiently mine
user-level dependencies, which are crucial for accurately
reflecting user intentions.

• Predicting the targeted behaviors is not reasonable in
session-based recommendations. Current MBSBR meth-
ods often define a target behavior and treat other behav-
iors as auxiliary, focusing on predicting the next item for
that target. However, in reality, users frequently engage in
auxiliary behaviors before performing target behavior. This
approach can lead to systems recommending items that users
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have already interacted with rather than new ones, which
contradicts the purpose of recommendation systems and may
degrade the user experience.

To address the aforementioned issues, we propose a novel
Behavior Habits Enhanced Intention Learning framework for
Session Based Recommendation (BHSBR) framework. First,
we focus on achieving the next-item recommendation that
users may be interested in, and design an intention learning
module for global semantic fusion behavior. This module
could efficiently integrate the global item transition rela-
tionships and internal behavior temporal information, which
further learn the behavior-aware semantic relationships be-
tween items. Technically, we construct a global item inter-
action graph to extract semantic connections between items.
Then, we aggregate behavior sequences under macro items
and fuse semantic connections with behavioral information
through gating mechanisms to capture fine-grained user in-
tentions. Meanwhile, we capture the coarse-grained intent
representation contained in the macro item sequence of the
session, aggregate it with fine-grained intent, and learn the
final intention representation of the user. Second, our approach
leverages hypergraphs to capture user behavior habits and
deduce dependencies at the user level. To elaborate, we
designate items as vertices within the hypergraph and construct
hyperedges that encompass all item-related behaviors occur-
ring within a session. This technique enables us to extract user
behavior habits from sessions, transcending constraints of time
and number, thereby enhancing user intentions and reducing
noise within behavioral sequences. Concurrently, to counteract
the challenges of gradient explosion and over-smoothing, we
add residual connections when constructing the hypergraph.
Finally, we design a mutual information fusion module that
adaptively fuses the information of the two modules to learn
the final representation of the session.

In summary, the main contributions of this paper are as
follows:

• We propose the BHSBR framework. It captures behavior
habits in sessions by constructing hypergraphs to learn
user-level behavior dependencies, and innovatively uti-
lizes global semantic relationships and item behavior se-
quences for fusion to learn session intent representations.
We adaptively fuse the two types of information to obtain
the final session preference.

• We focus on a more reasonable MBSBR problem, which
aims to discover items that users may be interested in
rather than simply speculating on items under the target
behavior. We construct a global graph to search the
entire semantic space combine behavioral information,
and learn complex user behavior habits, in order to more
accurately capture user intentions.

• We conduct extensive experiments on three real-world
datasets, and our model outperforms SOTA, demon-
strating the effectiveness of our framework. Meanwhile,
further ablation experiments have also verified that each
of our modules has its own effect.

The remainder of this paper is organized as follows. Section
II briefly reviews current related work. Section III analyzes the

data and defines the multi-behavior session-based recommen-
dation. Section IV introduces the framework of BHSBR in
detail. Section V analyzes the results of experiments. Finally,
Section VI summarizes the paper.

II. RELATED WORK

A. Session-based Recommendation

Due to the lack of user information and temporal interac-
tion, session recommendation algorithms differ from general
recommendation paradigms [18], [19]. FPMC [4] combined
the advantages of Matrix Factorization (MF) and Markov
Chain (MC) to achieve personalized next recommendation.
However, the MC-based method can only calculate similarity
based on the last item in the session, ignoring the infor-
mation on the previous items. RNN can effectively solve
this problem. Hereby, GRU4Rec [6] first utilized the GRU
method to model sessions and learn the temporal preferences
of the entire session. Meanwhile, as the attention mechanism
demonstrated its superiority in capturing sequence tempo-
ral features [20], NARM [7] added an attention layer to
GRU4Rec for generating session representations. STAMP [21]
considered both the general interest of long-term memory in
the session context and the short-term interest of the last
click, and utilized attention mechanisms to obtain the final
representation. Bert4Rec [22] designed a deep bidirectional
self-attention strategy to capture correlations between items.
Most of these RNN and attention-based methods focused on
capturing temporal features while paying insufficient attention
to structural features in sessions.

Recently, more and more methods have introduced GNN
into session recommendation. SRGNN [23] was the first to
design a gated GNN framework for learning the sequen-
tial structure in a session. SGNN-HN [24] designed a star
GNN model to capture high-order information that may exist
between non-adjacent items in a session, and designed a
Highway Network to adaptively learn embedding information
from item representations to alleviate the overfitting problem
in GNN. The above methods only encoded a single session and
did not effectively utilize the global information of the data.
In order to fully utilize the information in the dataset, GCE-
GNN [25] learned sequence representation by constructing
two views, a session graph and a global graph. COTREC
[26] introduced contrastive learning into session recommenda-
tion, generated labels using different connection relationships,
and supervised through contrastive learning strategies to ob-
tain session representations. MCLRec [27] proposed a meta-
optimized contrastive learning framework, which uses meta-
learning to guide model enhancers in updating, while consid-
ering contrastive regularization terms to solve the problems
of previous contrastive pairs being difficult to generalize and
lacking available information. Furthermore, some methods use
the idea of hypergraphs to model sessions. DHCN [28] first
modeled session data into hypergraphs to learn session embed-
ding. HIDE [29] mapped an item to multiple embeddings, each
corresponding to an intention, and disentangled the intentions
from both macro and micro perspectives to achieve prediction.
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B. Multi-behavior Recommendation

The multi-behavior recommendation aims to use behavioral
data in interactions to encode users and items, capture dy-
namic preferences in behavior, and improve recommendation
performance [30]–[33]. The traditional multi-behavior recom-
mendation algorithm [34] extended the matrix factorization
algorithm to achieve multi-behavior data encoding. However,
such methods cannot capture higher-order information about
users and items at the behavioral level. Most recent methods
utilized GNN to propagate the messages contained in behav-
iors in order to capture complex transformation relationships
[35]–[37]. CML [38] and MBSSL [39] combined GNN and
self-supervised learning methods to capture dependencies and
diversity between behaviors. However, user behavior often
contains deep information in chronological order. These meth-
ods only considered the behavioral interaction information
between users and items and did not delve into the deep-
level temporal relationships of behaviors. RIB [40] introduces
RNN layers into the model to learn fine-grained behavior
sequence representations. MKM-SR [41] designed a multi-
task learning framework that combined knowledge graphs
with session sequences and behavioral information for loss
calculation. PBAT [42] developed a personalized behavior
pattern generator to extract unique user behavior patterns and
designed a behavior-aware collaborative extractor that utilizes
attention mechanisms to extract collaborative relationships in
sequences. Although these methods have learned behavioral
dependencies, they have not explored deeper behavioral habits
and cannot better capture users’ personalized behavioral pref-
erences.

III. PRELIMINARY

A. Behavior Habits Definition

Behavior habit is defined as a sequence composed of all
behaviors the user taken towards a specific item within a
session. For example, in session se, if there are browsing,
adding to cart, and purchasing operations on item vi, it is
considered that the behavior habit for vi of the user is
[browse → carting → purchase]. A behavior habit reflects
the entire interaction process of a user with an item. These
habits may not be consciously aware by users, which are
instrumental in assisting in predicting recommendations.

B. Data Analysis

In order to explore the actual behavioral dependencies that
exist in the real world, understand how to learn session
behavioral dependencies, and explore the rationality of current
MBSBR tasks, we conduct data analysis on two datasets in
the real world, Appliances and Computers. These two datasets
are detailed in section V-A1. Specifically, we select a session
from Appliances and count the number of behavior habits in
that session. At the same time, we conduct a detailed statistical
analysis of the item behavior sequences in each dataset, includ-
ing all behavior habits in the dataset. In summary, we conduct
data analysis from both individual and holistic perspectives,
aiming to answer the following two questions:

𝑣1 𝑣1 𝑣2 𝑣2 𝑣3 𝑣3 𝑣4 𝑣5

0 1 2 3

𝑣1 𝑣5 𝑣6 𝑣2 𝑣2 𝑣7

Search

View

Cart

Buy

①

② ③

Fig. 1. Counts on all behavioral habits in session #37 in
Appliances dataset.

• RQ1: Can user behavior habits effectively reflect their
intentions? Is learning user-level behavioral dependencies
more reasonable than previous methods?

• RQ2: Currently, most MBSBR tasks set a target behavior
and set other types of behavior as auxiliary behaviors,
aiming to predict the next item under the target behavior. Is
this task setting reasonable?
1) RQ1: In order to explore the effects of different be-

havioral dependency learning methods in existing works, we
conduct in-depth research on the session. Specifically, we
randomly select one session #37 with multiple items and
behaviors in Fig. 1 from the Appliances dataset. First, scene
① represents behavior-level methods, which aggregates item
v1, v2, v3, and v5 with “view” behavior. Such methods can
only learn dependency relationships under different behaviors
independently of each other, thereby lacking the capacity to
learn complex cross-behavior dependency patterns. Second,
scenarios ② and ③ show the learning objects of item-level
methods. For item v2, this method can learn the behavior
dependency of [search → view] in ②, and the behavior
dependency of [cart → buy] in ③. However, these methods
either only learn binary behavior patterns, or only aggregate
different behaviors of items in continuous timestamps, without
mining the behavior dependency of [view → cart], con-
sequently failing to capture the complete behavior habits of
users towards items. Additionally, by examining session #37’s
behavior habits, we deduce the user’s shopping pattern: initiat-
ing with searches, followed by reviewing detailed information
or comments. Upon thorough evaluation, interested items are
added to the cart or purchased. Consequently, capturing user-
level behavior habits can more accurately identify which items
have a greater impact on user intent, achieving enhancement
of user intention.

2) RQ2: To explore the rationality of the MBSBR task,
we count the number of all behavior habits in two datasets.
Due to the large number of behavioral habits in the dataset,
we select 5 typical behavior habits for display as shown in
Fig. 2. Usually, the “buy” behavior is considered as the target
behavior. However, according to our statistics, out of nearly
ten million behavioral habits, the number of individual “buy”
behaviors of users for items in both datasets is 0. Moreover, the
total number of behavior habits that include “buy” accounts
for less than 0.2% of the total. This figure shows the two
behavior habits with the highest number of “buy” behaviors,
and it can be seen that there is a difference of hundreds of
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Fig. 2. Five Typical Behavior Habits on Two Datasets.

times compared to the most common [search] behavior habit.
This phenomenon indicates that in a session if there is a “buy”
behavior for an item, other behaviors must be taken before that
behavior occurs. In this case, if the recommender system still
predicts the items under the target behavior, the system will ul-
timately be more inclined to recommend products that the user
has already interacted with, rather than recommending new
items to the user. This contradicts the fundamental purpose of
a recommendation system. The repetitive recommendation of
items that users have already engaged with could potentially
diminish the overall satisfaction and engagement of the user. In
addition, our results also find that compared to other behaviors,
user “buy” behavior accounts for very small proportion (only
2% in Appliances dataset and 0.3% in Computers dataset),
such extremely small number of labels is hardly to produce
accurate item predictions under the “buy” target behavior. In
summary, predicting the recommendation task of items under
target behavior is unreasonable on MBSBR.

C. Task Formulation

In this section, we formulate the task of our multi-behavior
session-based recommendation.
Task Scenario. Suppose that we have a set of sessions
denoted as S = {s1, s2, · · · , sM}, where si represents the
i-th session and M represents the number of all sessions. For
session si = [v

b1,1
1 , v

b1,2
1 , v

b2,1
2 , · · · , vbn,m

n ], the element vbt,mt

represents the t-th interacted item in session si with behavior
bt,m, where bt,m represents the m-th behavior performed by
item vt, indicating a single behavior user can perform, such
as searching, buying, etc.
Prediction Process. Our recommendation system is dedicated
to making the next-item prediction for the session. However,
due to the diversity of behavioral patterns, there may be
multiple consecutive identical items in a session. For example,
suppose a session seg = [v

b1,1
1 , v

b1,2
1 , v

b2,1
2 , · · · , vbn,1

n , v
bn,2
n ].

Its last two items are all vn, with only different behaviors
being performed. In this case, the predicted next item is
likely to still be vn, which leads to information leakage.
To avoid this situation, we define consecutive identical items
in a session as a macro item and reconstruct new sessions
containing macro items for the original session set S. For
session seg in the previous example, the reconstructed session
is snew = [v1, v2, · · · , vn], and every macro item vi has a
corresponding behavior sequence hi = [bi,1, bi,2, · · · , bi,l],
where bi,j means the j-th behavior targeting vi and l represents
the length of the behavior sequence. Our goal is to utilize the

above information to predict the next macro item vn+1. We
formally set out the problem as follows:
• Inputs: The original session s = [v

b1,1
1 , v

b1,2
1 , v

b2,1
2 , · · · ,

v
bn,m
n ], the reconstructed session s′ = [v1, v2, · · · , vn] and

the behavior sequence list H = [h1, h2, · · · , hn] related to
the macro items in s′.

• Outputs: The predicted next macro item vn+1 for this
session from the item set.

IV. METHODOLOGY

A. Workflow Overview

Our proposed framework of BHSBR is illustrated in Fig.
3. We design a globally directed graph to extract semantic
relationships in the item space, and utilize GRU to capture
the behavioral sequential relationship of each macro item,
in order to obtain the intention representation of behavior-
aware fused semantics. Meanwhile, for the input session,
we construct a hypergraph to capture the behavior habits
in the session and update the item representation through a
hypergraph neural network to enhance user intention. Finally,
we fuse the two types of mutual information to obtain the final
session representation.

B. Intention Learning

1) Global Item Transition Capturing: Currently, most
multi-behavior recommendation methods only encode the
items in the current session, ignoring the global complex
high-order item transition relationships, which is beneficial to
learning item embedding in the session. We construct a global
item interaction graph to aggregate global-level neighborhood
information.

Define item set as V and the number of all items is N .
If in the session set S there exist vi, vj ∈ V such that
vi → vj , which means that the user interacts with vj after
interacting with vi. We define vj as the subsequent neighbor
of vi, and thus obtain the set of all items’ subsequent neighbors
N . So the global graph we construct can be represented
as G = {V, E}, where E = {(vi, vj)|vi ∈ V, vj ∈ N (vi)}
represents the interactive edge set at global-level and N (vi)
is the subsequent neighbors set of item vi. According to G,
we generate a normalized adjacency matrix Ag ∈ RN×N as
follows:

agij =
gij∑N
k=1 gik

, (1)

where agij and gij respectively represent elements from Ag

and G. Whereupon we design a simplified graph convolution
layer to globally encode the items:

E(l+1)
g = D−1AgE(l)

g W(l), (2)

where E(l)
g ∈ RN×d and W(l) ∈ Rd×d means the item

embedding and parameter matrix in the l-th layer respectively,
and d represents the embedding dimension size as well as
D ∈ RN×N is the degree matrix. After Lg-layer propagation,
we obtained an item representation E(Lg)

g that integrates global
high-order neighborhood information.
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Fig. 3. The overview of the proposed BHSBR.

2) Macro Item Representation Learning:
According to section III-C, for original session
s = [v

b1,1
1 , v

b1,2
1 , v

b2,1
2 , · · · , vbn,m

n ], we can obtain
the reconstructed session s′ = [v1, v2, · · · , vn] and
behavior sequence list H = [h1, h2, · · · , hn], where
hi = [bi,1, bi,2, · · · , bi,l] represents the behavior sequence
of macro item vi. After obtaining the item embedding
representation that aggregates global neighborhood
information, we design a macro item representation generator
to capture the personalized features of each macro item in
the session.

In order to extract the behavioral sequence characteristics of
macro item vi, we send its corresponding behavior sequence
hi to GRU:

zi,j = GRU(ebi,j , zi,j−1,ΦGRU ), (3)

where zi,j ∈ Rd and ebi,j ∈ Rd indicate the hidden state and
the embedding representation of the behavior bi,j respectively,
and ΦGRU is all parameters of GRU. After processing by
GRU, the hidden state zi,l of the last behavior in hi contains
the aggregated information throughout the entire behavior
sequence. As a consequence, we consider it as the behavioral
feature zi of the macro item vi and we can get the behavior
temporal feature of all macro items Z ∈ Rn×d in the session:

Z = [z1, z2, · · · , zn]. (4)

Although sessions are anonymous, learning their items and
behaviors from both structural and temporal perspectives can
still capture the unique preferences of each session. In order
to achieve personalized recommendation, for each session,
we construct adjacency matrices Ain,Aout ∈ Rn×n that
separately only include in degree and out degree for the macro
item sequence in chronological order, where n is the length of
macro item session. Meanwhile, we aggregate item embedding
with behavioral features and propagate information through

these two adjacency matrices to capture the preference features
of the session:

P = E ⊕ Z, (5)

where P ∈ Rn×2d is the representation that aggregates the
behavioral temporal features of macro items with the item
representation and E is the embedding of all macro items
in the session sampled from E(Lg)

g . ⊕ is the concatenation
operation. Then, we propagate the aggregated information into
two adjacency matrices, Ain and Aout, respectively, to obtain
higher-order fused representations for the two views:

Iin = AinWinP + bin,

Iout = AoutWoutP + bout,
(6)

where Win,Wout ∈ R2d×d and bin,bout ∈ Rn×d are
learnable parameters. After local neighborhood propagation,
we extract the intention representation of items hidden by users
in their behavior. However, the extracted information may
contain noise. To improve model performance and generaliza-
tion ability, we introduce a gating mechanism that aggregates
the original item representations through the selection of
information by the reset gate and update gate with the learned
intent representations. The formula is as follows:

I = Iin ⊕ Iout,
U = σ(WziI + WzhE),
R = σ(WriI + WrhE),
E′ = tanh(WniI + Wnh(R ⊗ E)),
X = (1 − U)⊗ E + U ⊗ E′,

(7)

where I ∈ Rn×2d represents the fusion intention representa-
tion that combines two views. Wzi,Wri,Wni ∈ R2d×d and
Wzh,Wrh,Wnh ∈ Rd×d are trainable parameters. σ(·) means
sigmoid function and ⊗ denotes the element level multiplica-
tion operator. U denotes the update gate, which decides how
much information from the original item embeddings to pass
through. R represents the reset gate, which determines how
much information from the original item embeddings needs
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to be forgotten. By using the gating mechanism to filter and
update item embeddings and behavioral intention information,
we have obtained the final macro item intention representation
X ∈ Rn×d in the session.

3) Session Intention Representation Generation: In the
previous section, we obtain the behavior-aware semantic repre-
sentation for each macro item in the session, and the intention
of the entire session can be learned based on them. In general,
the user is always driven by one type of intention in a single
session. However, the intentions of items within a session may
be diverse, so there is inevitably noise. In order to capture
the intention representation of the session more accurately, we
utilize attention gating mechanism to determine the weight of
each item in the session.

First, we construct the intention prototype of the session.
To aggregate all item information in the session, we adopt an
average pooling operation:

ep =
1

n

n∑
i=1

ei, (8)

where ep ∈ Rd is the intention prototype of the session. Then
we design a gated attention layer to transfer the session intent
prototype into the item representation as follows:

αi =
(Wqxi)T Wkep√

d
,

x̂i = (1 − αi)xi + αiep,
(9)

where αi is the attention weight of macro item vi in the session
and Wq,Wk ∈ Rd×d are learnable parameters. In this way, we
obtain the final fused item representation. Due to the attention
method and GRU’s information transmission mechanism, the
last item in the session contains information from all previous
items. Therefore, we use the representation of the last item vn
as the overall intention representation of the session:

eIs = x̂n, (10)

where eIs ∈ Rd denotes the intention representation of the
session, which integrates the sequential information of items
in the session, global-level neighborhood relationships, and
fine-grained behavioral operations within the items.

C. Behavior Habits Learning

The purpose of this module is to capture the complete
behavioral process of each item in a session to model user-
level behavioral habits and guide item representation learning
based on this information to achieve enhancement of user
intention. In section IV-B, although we use GRU to learn
the behavioral intentions corresponding to macro items, the
information learned by this module is still limited to the
sequential patterns in the session and cannot capture the
user’s whole behavior habits. For example, a user first clicks,
browses, and adds items v1 to the shopping cart, and then
discovers items v2 and v3 that he may be interested in and
browses them separately, and then he makes a purchase of v1.
In that way, the macro item sequence corresponding to this
user is [v1, v2, v3, v1]. Our intention learning module can only
learn v1 at two time positions separately, and cannot utilize

a complete behavior habit for v1, thus unable to capture the
user’s potential behavioral preferences.

Since hypergraphs allow a hyperedge to connect more than
two vertices, they can represent more complex relationships
compared to general graph structures. In the context of
behavior habits, a single item may correspond to multiple
types of behaviors, making the hypergraph structure highly
suitable for capturing behavior habits. Therefore, we construct
a behavior habits hypergraph for each session to capture all
item behavior habits within it. For the constructed hypergraph
Gh =

{
Vh, Eh

}
, Vh represents the set of behaviors in

the behavior space and Eh represents the macro item set
in the session. The elements in the correlation matrix Q
corresponding to the hypergraph are defined as follows:

qij = |bij |+ β, (11)

where |bij | means the number of behavior bj performed on item
vi in the session and β is residual to prevent gradient explo-
sion. Different users generate behavior habits hypergraphs that
are also not identical, hence personal user behavior preferences
can be extracted from them.

After obtaining the behavior habits hypergraph of the ses-
sion, we utilize the hypergraph graph convolution method for
message passing to integrate the behavior habits into the item
representation. Inspired by [43], we design our hypergraph
learning network as follows:

Eh = D−1
v QD−1

e QT Ê, (12)

where Ê ∈ Rn×d represents the initial item embedding in
the session. De and Dv are degree matrices normalized in
vertex and edge dimensions, respectively. Through hypergraph
learning network, we achieve information propagation from
nodes to hyperedges, and from hyperedges back to nodes,
thereby refining the representation of items. After processing
with hypergraph convolution, we obtain the item embedding
representation Eh that integrates behavior habits information.
Ultimately, we adopt the average pooling method to calculate
the session representation:

eBs =
1

n

n∑
i=1

ehi , (13)

where eBs ∈ Rd means the final session representation fused
after integrating behavior habits into items.

D. Mutual Information Fusion
In our framework, we encode the session information from

two perspectives, the session intention and the behavior habits.
To generate the final session representation, we design a gated
attention layer to achieve this mutual information fusion with
trade-offs. The specific implementation process is as follows:

γ = σ(Ws(eIs ⊕ eBs ) + bs),

es = γ ⊗ eIs + (1− γ)⊗ eBs ,
(14)

where Ws ∈ R2d×d and bs ∈ Rd are both learnable
parameters and es is the final session representation. In this
way, we successfully integrate the mutual information between
the user’s intention and behavior habits in the session, and we
can utilize this feature vector for recommendation prediction.
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E. Model Optimization and Prediction

To make the prediction process more stable, we perform L2
regularization on the session representation and item embed-
ding separately:

ês = L2Norm(es),
Êg = L2Norm(Eg),

(15)

where Eg ∈ RN×d is the initial global item embedding.
Subsequently, we calculate the final prediction results and
adopt cross-entropy loss as the optimizer for model training:

ŷi = softmax(êTs Êg),

L = −
N∑
i=1

yilog(ŷi),
(16)

where ŷi, yi means the probability and the ground truth of item
vi being predicted, respectively.

V. EXPERIMENTS

In this section, we conduct extensive experiments and ana-
lyze the experimental results in detail to answer the following
questions:

• RQ1: Can the proposed multi-behavior session-based rec-
ommendation model BHSBR outperform other baselines?

• RQ2: Does each module of the BHSBR model have a
positive impact on performance?

• RQ3: What is the effect of key parameters to the BHSBR
model performance?

• RQ4: Does the BHSBR model capture users’ intentions
accurately?

We first introduce the experimental settings, including the
datasets, baselines, evaluation metrics, and parameter settings.
Subsequently, we analyze each experimental result to answer
the questions asked above.

A. Experimental Settings

1) Datasets: We conduct extensive experiments on three
real-world datasets: Appliances, Computers, and Trivago,
which contain rich session behavior interaction data. Among
them, Appliances and Computers datasets are from China’s
huge e-commerce platform JD.com 1, while the Trivago
dataset is provided by the global hotel search platform trivago
in the RecSys Challenge 2019 2:

• Appliances: This dataset contains session interaction
records for “Appliances”. It has 10 different types of
behaviors, such as “add to cart”, “purchase”, and so on.

• Computers: This dataset, along with Appliances, belongs
to JD’s dataset and contains historical interaction data
about “Computers”. Similarly, it also includes 10 different
types of behaviors.

• Trivago: This dataset contains interaction data about
hotels, with a total of six types of operation objects
being the behavior types of items. During the experiment,

1https://tinyurl.com/ybo8z4yz
2http://www.recsyschallenge.com/2019/

TABLE I
DATASETS

Dataset Name Appliances Computers Trivago
# behavior types 10 10 6

# items 77,258 96,290 183,561
# train sessions 1,294,157 416,664 260,877

# validation sessions 184,399 59,518 37,027
# test sessions 358,795 118,434 74,770

we only use the training set of the original dataset to
repartition and conduct the experiment.

During the dataset processing phase, based on the number of
sessions, we divide the training set, validation set, and testing
set in the proportions of 70%, 10%, and 20% respectively.
For the Trivago dataset, we filter out items with fewer than
5 occurrences and sessions with only one interactive item.
Unlike the processing of the Trivago dataset, for the other
two datasets, we filter out items that appeared less than 50
times. The relevant information of these datasets is shown in
Table I.

2) Baselines: We compare our BHSBR with various rec-
ommendation model baselines to verify the effectiveness and
superiority of our model.
General Session-based Recommendation Methods (SBRs):

• GRU4Rec [6]: It introduced GRU for the first time in
session recommendation to learn user preferences.

• SASRec [44]: It leveraged attention mechanism to model
user historical behavior and extracted session preferences.

• STAMP [21]: It designed a long-term and short-term
memory network to capture users’ long-term memory and
recent interests separately.

• SRGNN [23]: It built a item level interaction directed
graph for each session to capture the complex transfor-
mation relationships of items.

• SGNN-HN [24]: It utilized star graph neural networks to
capture complex transformation relationships in items.

• COTREC [26]: It designed a self-supervised contrastive
learning paradigm to achieve item-level information en-
hancement.

• MCLRec [27]: It utilized meta-learning to guide param-
eter updates of model enhancers, in order to improve
contrast quality without increasing input data volume.

Hypergraph-enhanced SBRs:
• DHCN [28]: It modeled each session as a hyperedge of a

hypergraph, with items as vertices, to capture high-order
interactions between items.

• HIDE [29]: It constructed a hypergraph for each session
and decoupled the click intention of the item from both
macro and micro perspectives.

Multi-behavior SBRs:
• MBHT [13]: It designed a multi-scale transformer to cap-

ture sequential patterns and combined it with hypergraph
networks to learn behavioral dependencies.

• EMBSR [14]: It adopted an extended self-attention net-
work to utilize pairwise relational patterns of micro
behavior to capture fine-grained user preferences.

• PBAT [42]: It captured user features through dynamic
representation encoding and personalized pattern learn-
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THREE DATASETS

Metric General Session-based Recommendation Hypergraph-based Multi-behavior Methods Ours Impv.GRU4Rec SASRec STAMP SRGNN SGNN-HN COTREC MCLRec DHCN HIDE MBHT EMBSR PBAT BHSBR
Appliances

Recall@10 25.25 27.56 25.58 31.09 31.53 30.25 24.93 31.08 29.20 0.46 34.40 27.28 36.82 7.03%
MRR@10 13.15 14.61 14.29 16.71 16.75 10.34 11.46 12.45 11.10 0.15 17.21 10.53 18.53 7.67%

NDCG@10 16.01 17.67 16.97 20.11 20.24 15.00 14.63 16.82 15.37 0.23 21.26 14.42 22.82 7.34%
Recall@20 31.48 33.83 30.53 38.19 38.70 40.07 32.47 40.77 37.95 0.68 42.75 38.25 45.90 7.37%
MRR@20 13.59 15.03 14.63 17.20 17.24 11.05 11.98 13.12 11.71 0.16 17.79 11.29 19.13 7.53%

NDCG@20 17.58 19.22 18.22 21.90 22.05 17.58 16.52 19.26 17.58 0.28 23.38 17.19 25.06 7.19%
Computers

Recall@10 5.42 7.82 7.59 11.86 12.53 16.57 13.11 17.12 10.27 2.24 15.05 3.76 18.31 6.95%
MRR@10 2.49 4.25 4.72 5.43 5.79 5.90 4.88 6.16 3.79 0.84 5.68 1.13 7.69 24.83%

NDCG@10 3.17 5.09 5.40 6.93 7.37 8.64 6.82 8.76 5.30 1.16 7.83 1.73 10.18 16.21%
Recall@20 7.74 9.76 8.85 16.20 16.76 23.79 17.91 23.85 14.68 3.61 20.64 6.55 25.06 5.07%
MRR@20 2.63 4.38 4.80 5.73 6.08 6.39 5.21 6.68 4.10 0.93 6.06 1.32 8.15 22.01%

NDCG@20 3.70 5.56 5.72 8.03 8.43 10.45 8.03 10.67 6.42 1.51 9.22 2.43 11.86 11.15%
Trivago

Recall@10 15.33 17.53 17.65 11.90 9.96 21.26 20.87 23.56 21.93 12.50 22.78 6.51 25.38 7.72%
MRR@10 7.52 8.38 9.26 5.60 4.92 5.75 7.75 8.97 7.78 5.38 9.93 1.42 11.04 11.17%

NDCG@10 9.34 10.54 11.26 7.08 6.10 9.35 10.82 12.50 11.08 7.05 12.93 3.14 14.15 9.43%
Recall@20 19.90 22.53 21.21 15.77 12.94 31.82 28.55 33.56 30.86 17.27 31.10 13.99 34.27 2.12%
MRR@20 7.81 8.72 9.51 5.87 5.13 6.47 8.28 9.67 8.40 5.71 10.51 1.88 11.56 9.99%

NDCG@20 10.46 11.81 12.16 8.06 6.86 12.02 12.76 15.05 13.34 8.25 15.04 5.00 16.39 8.90%

ing, and designed a behavior-aware collaborative extrac-
tor to extract the semantics of behavior transitions.

3) Evaluation Metrics: To more comprehensively evaluate
the performance of our model, we employ several commonly
used evaluation metrics in the session-based recommendation
domain to assess all models. In order to make the experi-
ment more convincing, we select three evaluation metrics:
top-K Recall (Recall@K), top-K Mean Reciprocal Rank
(MRR@K), and top-K Normalized Discounted Cumulative
Gain (NDCG@K). We set the value of K to [10, 20].

4) Parameter Settings: For all baseline methods, we follow
the relevant configurations described in their corresponding
papers, preprocess the data, and set parameters to ensure they
achieve optimal results. In order to ensure the fairness and
effectiveness of the experiment, we unify the prediction goal
as the next item of the session without considering whether
it is the target behavior. The parameter values used in our
framework are set as follows. We configure our model with a
batch size of 128 and set the training epochs to 30. For the
Trivago dataset, we establish a maximum sequence length of
50, while the other two datasets are 20. Additionally, We set
the embedding dimension value to 100.

B. Overall Comparison (RQ1)

We conduct performance evaluations on all baselines and
our BHSBR in the task for predicting the next item. The
evaluation results of the three datasets are shown in Table II.
From the research results, we have the following summary:
• Our proposed BHSBR achieves the best performance on

three datasets compared to all baseline methods. On average,
it improved by 8.21% on Trivago, 14.37% on Computers,
and 7.36% on Appliances, verifying the superiority of our
model.

• Among three datasets, the improvement on the Computers
dataset is more significant. A possible reason is that a sig-
nificant number of behavior habits in the Computers dataset
are “search”, which means that there may be a multitude of
items in each session that have only “search” interactions.

Consequently, this results in a substantial amount of noise.
Compared to other methods, our proposed model exhibits
greater robustness and is capable of effectively mitigating
the impact of noise.

• GNN-based methods generally perform better than RNN-
based methods, indicating that GNN plays a significant
role in modeling session structures. Among them, DHCN
performs outstandingly on three datasets, proving the supe-
riority of hypergraphs in capturing high-order information.

C. Ablation Study (RQ2)

In order to verify the rationality and effectiveness of each
module design of our BHSBR, we conduct sufficient ablation
experiments. Specifically, we set the following variants:
• BHSBR NH removes the hypergraph-based behavior habit

learning layer and only encodes the session representation
through the behavior-aware intention learning layer.

• BHSBR NI removes the entire intention learning module
and only retains the behavior habit learning layer, capturing
only all behavior habits in the session to encode the final
representation.

• BHSBR NG removes the global semantic capture process
in the intent learning module, only aggregating behavioral
information under macro items without utilizing global
semantic information for intent enhancement.
The results of the ablation experiment are shown in Table

III. From the experimental results, we can draw the following
conclusions:
• Among the three datasets, BHSBR NH generally performs

the worst, especially in the MRR and NDCG metrics, indi-
cating that capturing user behavior habits plays a profoundly
significant role in enhancing user intention and reducing
noise issues in sessions.

• The performance degradation of BHSBR NI is also sig-
nificant, demonstrating that there is a deep correlation
between user intent and the temporal relationship between
items in session recommendation. Consequently, integrating
behavioral information and semantic information into the
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Fig. 4. The impact of hyperparameters Lg and η on Trivago and Computers datasets.

TABLE III
ABLATION STUDY ON THREE DATASETS

Dataset Metric BHSBR NH BHSBR NI BHSBR NG BHSBR

Appliances

Recall@10 34.74 35.10 36.73 36.82
MRR@10 16.98 17.53 18.19 18.53

NDCG@10 21.08 21.67 22.56 22.82
Recall@20 43.52 44.24 45.46 45.90
MRR@20 17.57 18.16 18.81 19.13

NDCG@20 23.24 23.98 24.83 25.06

Computers

Recall@10 16.76 15.20 17.12 18.31
MRR@10 6.45 6.95 7.23 7.69

NDCG@10 8.82 8.88 9.42 10.18
Recall@20 23.16 20.40 23.01 25.07
MRR@20 6.87 7.30 7.62 8.15

NDCG@20 10.44 10.18 10.84 11.86

Trivago

Recall@10 23.29 23.10 23.98 25.38
MRR@10 9.34 10.63 10.23 11.04

NDCG@10 12.59 13.53 13.38 14.07
Recall@20 32.17 30.56 32.38 34.27
MRR@20 9.95 11.13 10.81 11.56

NDCG@20 14.83 15.39 15.52 16.29

session temporal relationship can better capture the user’s
true intention.

• The performance of BHSBR NG has also decreased on
three datasets. Notably, the decrease is particularly signif-
icant on the Trivago dataset. One possible reason is that
in the Trivago dataset, most of the predicted items in each
session have not appeared in previous interactions. Thus,
after removing the global semantic capture layer, the model
tends to recommend items that have already been interacted
with by users, while lacking the ability to discover new
items.

D. The Impact of Hyperparameters (RQ3)

To investigate the impact of different hyperparameter values
on model performance, we conduct sufficient hyperparameter
experiments on the layer number of global semantic capturing
process Lg and the learning rate η of Adam loss optimizer on
the Trivago and Computers datasets. The experimental results
are shown in Fig. 4.
• We respectively set the value of Lg to {1, 2, 3, 4, 5}. From

Fig. 4, it can be observed that as Lg increases, each item can

aggregate richer global neighborhood information, which
better captures user intent during the intention encoding pro-
cess. Consequently, the model’s performance improves with
the elevation of Lg . However, in Trivago dataset, when Lg

exceeds 3, the model performance actually decreases. This
is because too many iterations of global graph convolution
can cause items to aggregate too much neighborhood infor-
mation, resulting in over-smoothing issues, and leading to
a decrease in model performance. In summary, the optimal
Lg value varies for different datasets, and appropriate sizes
should be selected for each dataset to achieve optimal model
performance.

• The values of η is examined in {0.001, 0.003, 0.005,
0.008, 0.01}. Generally speaking, the learning rate η of
the optimizer controls the step size of model optimization.
Setting the learning rate too low can easily slow down
the convergence speed of the model and drag down its
efficiency. If the learning rate is set too high, however, it
may lead to missing the optimal solution. Therefore, it is
necessary to make a trade-off and set an appropriate learning
rate size to achieve relative optimization. From Fig. 4, we
can observe that the optimal η value in the Trivago dataset is
0.001, while in the Computers dataset it is 0.005. Therefore,
the optimal η values corresponding to different datasets also
vary.

E. Case Study (RQ4)
To verify that our BHSBR can accurately capture user

intentions, we conduct a case study and randomly sample
a session 435 from the Computers dataset. We analyze its
behavior habits hypergraph structure and semantic neighbors
in detail and present its prediction results, as shown in Fig.
5. From the graph, we can observe that by capturing the
behavior habits of this session, the user has engaged in a lot
of behavior towards items 4 and 1963, which means that the
user’s main intention should be focused on these two items.
Meanwhile, our designed intention learning module mines
semantic information of items from a global perspective, and it
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Fig. 5. A case for BHSBR Prediction on Computers dataset.
can be observed that in this session, except for item 1963, the
other four items can be connected through semantically related
items. By combining these two pieces of information, our
BHSBR is able to capture that the user’s intention should be
associated with item 4. We provide the top-5 prediction results
of this session, where we successfully predict target item 2197,
and all predicted items have strong semantic connections with
item 4, which proves that BHSBR can accurately capture user
intentions and provide new item recommendations for users.
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VI. CONCLUSION

In this work, we conduct data analysis on multi-behavior
scenarios in recommendation models to explore how to use
behavioral information to learn behavioral dependencies and
better capture user intentions, and explore task settings in
multi-behavior scenarios. We propose a new session-based
recommendation framework BHSBR. Specifically, we adopt
global GNN and GRU to learn semantic relationships and
behavioral information of items in a session, and fuse them
using gating mechanisms to obtain intent representations.
Meanwhile, we design a hypergraph for each session to capture
user-level behavior habits and achieve intention enhance-
ment through HGNN. Extensive experiments demonstrate our
model’s superiority over SOTA approaches, with ablation
studies confirming the efficacy of each module.
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